欢迎登录材料期刊网

材料期刊网

高级检索

随着汽车和航空工业的飞速发展,对节能减排和轻量化提出了更高的要求,使得高强轻质镁合金有了更大的发展.稀土元素由于具有优异的固溶和沉淀强化效果,能够改善合金的高温和抗蠕变性能,提高耐蚀性,同时稀土元素还具有除氢脱氧、提高铸造性能等作用,从而使稀土镁合金成为研究的一大热点,并在航空航天、电子、汽车、通讯等领域展现出了广阔的应用前景.近年来,通过向Mg-RE合金中加入Zn,Cu或Ni等元素,合理调整合金成分、温度和冷却条件,形成了一种具有长周期堆垛有序结构(long period stacking ordered,LPSO)的有序固溶体.合金经塑性变形后LPSO相呈弥散状均匀分布在基体上,同时细化基体晶粒,极大地提高了合金的强韧性.长周期堆垛有序结构作为镁合金中一种新的有效的增强相,能够显著提高合金的力学性能,具有极大的发展前景.综述了长周期增强镁合金的研究进展和应用现状,主要介绍了Mg-RE-Zn,Mg-RE-Cu,Mg-RE-Ni合金系的国内外研究现状,提出了当前研究需要解决的主要问题,展望了长周期堆垛有序结构增强镁合金的发展趋势.

参考文献

[1] 吴玉娟,丁文江,彭立明,曾小勤,林栋樑.高性能稀土镁合金的研究进展[J].中国材料进展,2011(02):1-9.
[2] 张松,袁广银,卢晨,丁文江.长周期结构增强镁合金的研究进展[J].材料导报,2008(02):61-63,81.
[3] Y.M. Zhu;M. Weyland;A.J. Morton .The building block of long-period structures in Mg-RE-Zn alloys[J].Scripta materialia,2009(11):980-983.
[4] Luo ZP.;Zhang SQ. .High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy[J].Journal of Materials Science Letters,2000(9):813-815.
[5] Yoshihito Kawamura;Kentaro Hayashi;Akihisa Inoue .Rapidly Solidified Powder Metallurgy Mg_(97)Zn_1Y_2 Alloys with Excellent Tensile Yield Strength above 600 MPa[J].Materials transactions,2001(7):1172-1176.
[6] Yasumasa Chino;Mamoru Mabuchi;Shigehiro Hagiwara .Novel equilibrium two phase Mg alloy with the long-period ordered structure[J].Scripta materialia,2004(7):711-714.
[7] Jinshan Zhang,Jidong Xu,Weili Cheng,Changjiu Chen,Jingjing Kang.Corrosion Behavior of Mg-Zn-Y Alloy with Long-period Stacking Ordered Structures[J].材料科学技术学报:英文版,2012(12):1157-1162.
[8] 高岩 .Mg-Y-Gd-Zn-Zr镁合金组织、性能及其蠕变行为研究[D].上海交通大学,2009.
[9] Wu, YJ;Peng, LM;Zeng, XQ;Lin, DL;Ding, WJ;Peng, YH .A high-strength extruded Mg-Gd-Zn-Zr alloy with superplasticity[J].Journal of Materials Research,2009(12):3596-3602.
[10] Y. J. Wu;D. L. Lin;X. Q. Zeng;L.M. Peng;W. J. Ding .Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg-Gd-Zn-Zr alloy[J].Journal of Materials Science,2009(6):1607-1612.
[11] T. Honma;T. Ohkubo;S. Kamado .Effect of Zn additions on the age-hardening of Mg-2.0Gd-l.2Y-0.2Zr alloys[J].Acta materialia,2007(12):4137-4150.
[12] Michiaki Yamasaki;Tsutomu Anan;Shintaro Yoshimoto .Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate[J].Scripta materialia,2005(7):799-803.
[13] O?orbe, E.;Garcés, G.;Pérez, P.;Adeva, P. .Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg-Y _(2X) -Zn _X alloys[J].Journal of Materials Science,2012(2):1085-1093.
[14] K. Hagihara;A. Kinoshita;Y. Sugino;M. Yamasaki;Y. Kawamura;H.Y. Yasuda;Y. Umakoshi .Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy[J].Acta materialia,2010(19):6282-6293.
[15] 李露冉,孙威,刘林林.合金元素对Mg-Gd系合金组织及时效硬化行为的影响[J].稀有金属,2012(01):19-24.
[16] Yoshihlto Kawamura;Takayuki Kasahara;Shogo Izumi .Elevated temperature Mg_(97)Y_2Cu_1 alloy with long period ordered structure[J].Scripta materialia,2006(5):453-456.
[17] Han Ma;Ling-Ling Shi;Jian Xu .Chill-cast in situ composites in the pseudo-ternary Mg-(Cu,Ni)-Y glass-forming system: Microstructure and compressive properties[J].Journal of Materials Research,2007(2):314-325.
[18] Yongbo XU,Daokui XU,Xiaohong SHAO,En-hou HAN.Guinier-Preston Zone, Quasicrystal and Long-period Stacking Ordered Structure in Mg-based Alloys, A Review[J].金属学报(英文版),2013(03):217-231.
[19] T. Itoi;K. Takahashi;H. Moriyama .A high-strength Mg-Ni-Y alloy sheet with a long-period ordered phase prepared by hot-rolling[J].Scripta materialia,2008(10):1155-1158.
[20] X.H. Shao;Z.Q. Yang;J.H. You .Microstructure and microhardness evolution of a Mg_(83)Ni_6Zn_5Y_6 alloy upon annealing[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2011(26):7221-7228.
[21] Q.A. Zhang;D.D. Liu;Q.Q. Wang .Superior hydrogen storage kinetics of Mg_(12)YNi alloy with a long-period stacking ordered phase[J].Scripta materialia,2011(3):233-236.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%