欢迎登录材料期刊网

材料期刊网

高级检索

针对应力变化较大的碳纤维增强复合材料层合板,提出削层结构铺层分级优化模式.通过将结构分解为若干子铺层并对各子铺层的位置、尺寸、铺层数以及铺层顺序进行优化,得到了满足强度和可制造性要求且质量最小的结构设计方案.该模式的第1、2级优化利用参考层对各子铺层位置及尺寸进行优化,第3级优化通过引入3次样条插值参数化方法对各子铺层层数和铺层顺序进行优化.参考层的引入可减少设计变量的数量,3次样条插值参数化方法可解决以铺层角为设计变量时设计变量数目不确定的问题.利用有限元方法对结构进行力学分析计算,并依据Tsai-Wu准则确定结构强度.在第2、3级优化中利用遗传算法对优化问题进行求解.算例计算表明:削层结构铺层分级优化模式结果合理可信.与均匀铺层方法结果比较可知:削层结构可有效减少结构质量.

参考文献

[1] Michel D. Thompson;Christopher D. Eamon;Masoud Rais-Rohani.Reliability-Based Optimization of Fiber-Reinforced Polymer Composite Bridge Deck Panels[J].Journal of Structural Engineering,200612(12):1898-1906.
[2] Erdal O;Sonmez F O.Optimum design of composite laminates for maximum buckling load capacity using simulated annealing[J].Computers & Structures,200571(01):45-52.
[3] Park J H;Hwang J H;Lee C S.Stacking sequence design of composite laminates for maximum strength using genetic algorithms[J].Computers & Structures,200152(02):217-231.
[4] Ghiasi H;Pasini D;Lessard L.Optimum stacking sequence design of composite materials Part Ⅰ:Constant stiffness design[J].Computers & Structures,200990(01):1-11.
[5] Ghiasi H;Fayazbakhsh K;Pasini D.Optimum stacking sequence design of composite materials Part Ⅱ:Variable stiffness design[J].Computers & Structures,201093(01):1-13.
[6] David B. Adams;Layne T. Watson;Zafer Guerdal;Christine M. Anderson-Cook.Genetic algorithm optimization and blending of composite laminates by locally reducing laminate thickness[J].Advances in engineering software,20041(1):35-43.
[7] Jung-Seok Kim;Chun-Gon Kim;Chang-Sun Hong.Optimum design of composite structures with ply drop using genetic algorithm and expert system shell[J].Composite Structures,19992(2):171-187.
[8] 刘振国;胡杰;胡龙.基于遗传算法的层合板分级铺层全局优化[J].北京航空航天大学学报,2013(04):478-483.
[9] 安伟刚;陈殿宇;粱生云.复合材料尖削结构同级优化方法研究及ISIGHT实现[J].西北工业大学学报,2012(3):390-394.
[10] Luigi Iuspa;Eugenio Ruocco.Optimum topological design of simply supported composite stiffened panels via genetic algorithms[J].Computers & structures,200817/18(17/18):1718-1737.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%