欢迎登录材料期刊网

材料期刊网

高级检索

为研究等腰梯形蜂窝芯玻璃钢夹芯板面内压缩破坏机制,利用材料试验机对夹芯板面内压缩性能进行了试验测试,并开展了模拟研究.结果表明:夹芯板的面内压缩破坏方式主要有面板折断、夹芯板屈曲失稳和夹芯板中面板与蜂窝芯脱粘3种类型.面板为夹芯板面内压缩的主要承载构件,蜂窝芯对面板起到固支作用.面板结构参数与材料参数为影响夹芯板面内压缩抗压强度与抗压刚度主要因素,多数蜂窝芯的结构参数与材料参数对夹芯板面内压缩抗压强度的影响微弱,而个别蜂窝芯的结构参数对夹芯板面内压缩抗压刚度的影响比较显著.夹芯板体积一定时,随着蜂窝芯胞体单元数量的增加,夹芯板面内压缩的抗压强度与抗压刚度逐渐增大.

参考文献

[1] 杜善义.先进复合材料与航空航天[J].复合材料学报,2007(01):1-12.
[2] M.ZABIHPOOR;S.ADIBNAZARI;R.MOSLEMIAN.Mechanisms of Fatigue Damage in Foam Core Sandwich Composites with Unsymmetrical Carbon/Glass Face Sheets[J].Journal of Reinforced Plastics and Composites,200717(17):1831-1842.
[3] Uday K. Vaidya;Selvum Pillay;Shane Bartus;Chad A. Ulven;Dana T. Grow;Biju Mathew.Impact and post-impact vibration response of protective metal foam composite sandwich plates[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20061/2(1/2):59-66.
[4] S. Nemat-Nasser;W.J. Kang;J.D. McGee;W.-G. Guo;J.B. Isaacs.Experimental investigation of energy-absorption characteristics of components of sandwich structures[J].International journal of impact engineering,20076(6):1119-1146.
[5] 孙直;石姗姗;孙士勇;陈浩然;胡晓智.芳纶纤维增韧碳纤维-泡沫金属夹芯梁压缩性能及界面性能[J].复合材料学报,2014(6):1497-1502.
[6] Experimental investigation of interfacial fracture behavior in foam core sandwich beams with visco-elastic adhesive interface[J].Composite structures,20105(5):1085.
[7] Zhi Sun;J. Jeyaraman;Shiyong Sun.Carbon-fiber aluminum-foam sandwich with short aramid-fiber interfacial toughening[J].Composites, Part A. Applied science and manufacturing,201211(11):2059-2064.
[8] SUN ShiYong;CHEN HaoRan.The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model[J].中国科学:物理学 力学 天文学(英文版),2011(8):1481-1487.
[9] 闫光;韩小进;阎楚良;左春柽;程小全.复合材料圆柱壳轴压屈曲性能分析[J].复合材料学报,2014(3):781-787.
[10] 杨颜志;郑权;李昊;吕榕新;王瑞凤.复合材料格栅圆柱筒稳定性数值仿真与试验[J].复合材料学报,2015(1):295-300.
[11] 井玉安;果世驹;李志军;韩静涛.钢蜂窝夹芯板面内压缩性能[J].机械工程材料,2007(8):19-22,48.
[12] D. Karagiozova;T. X. Yu.Plastic deformation modes of regular hexagonal honeycombs under in-plane biaxial compression[J].International Journal of Mechanical Sciences,200410(10):1489-1515.
[13] A. -J Wang;D. L. McDowell.In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs[J].Journal of engineering materials and technology,20042(2):137-156.
[14] 田爱平;余为;李东杰.泡沫铝-空心玻璃微珠/环氧泡沫复合材料压缩及弯曲力学性能[J].复合材料学报,2013(4):74-81.
[15] P. R. Onck;E. W. Andrews;L. J. Gibson.Size effects in ductile cellular solids. Part I: modeling[J].International Journal of Mechanical Sciences,20013(3):681-699.
[16] Tantikom K;Aizawa T;Mukai T.Symmetric and asymmetric deformation transition in the regularly cell-structured materials. Part I: experimental study[J].International Journal of Solids and Structures,20058(8):2199-2210.
[17] Zhang WH;Sun SP.Scale-related topology optimization of cellular materials and structures[J].International Journal for Numerical Methods in Engineering,20069(9):993-1011.
[18] 郑吉良;孙勇;彭明军.基于纤维拔出理论的复合材料力学性能的研究[J].兵器材料科学与工程,2014(2):16-22.
[19] 郑吉良;孙勇.单层与多层蜂窝芯玻璃钢蜂窝板的热性能模拟[J].复合材料学报,2014(2):505-511.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%