欢迎登录材料期刊网

材料期刊网

高级检索

将丁腈橡胶(NBR)与预硫化滑动接枝共聚物(SGC)混合制备 SGC/NBR复合材料,并采用DSC、橡胶加工分析仪(RPA)、TEM和 FTIR等研究了预硫化温度对复合材料内部结构及动态力学性能的影响。结果表明:SGC作为分散相在 NBR基体中形成了海岛结构,且与NBR 大分子之间形成了分子间氢键,使两相相容性较好并形成了明显的界面作用区。界面作用区的存在使 SGC/NBR 复合材料的玻璃化转变温度与纯 NBR 基体相比升高,同时使复合材料的拉伸强度和拉断伸长率等力学性能显著增强,并出现了明显的拉伸取向。由于 SGC 与NBR之间分子链的扩散以及氢键作用,使分子链σ单键的内旋转受阻,旋转时需要消耗能量以克服所受的阻力,造成 SGC/NBR复合材料的损耗因子明显增加,其中预硫化温度为160℃时阻尼效果最好。SGC/NBR复合材料在建筑桥梁振动频率应变变形范围内表现出优异的损耗性能,可应用于高阻尼隔震支座。

Sliding graft copolymer (SGC)/nitrile butadiene rubber (NBR)composites were prepared by blending NBR with presulfiding SGC.The effects of presulfiding temperature on internal structure and dynamic mechanical properties of the composites were investigated by DSC,rubber processing analyzer (RPA),TEM,FTIR,etc.The results show that the sea island structure forms:with SGC as the dispersed phase in NBR matrix.The intermolecu-lar hydrogen bonds are formed between NBR macromolecule,leading to good compatibility and apparent interfacial interaction region.Compared with the pure NBR matrix,the glass transition temperature for SGC/NBR composites increase and the mechanical properties such as the tensile strength and elongation at break of composites increase sig-nificantly with stretch orientation because of the existence of the interfacial interaction region.Due to the diffusion and hydrogen bonding between SGC and NBR molecular chains,the internal rotation of the molecular chainσsingle bond is hindered,so composites need to consume energy to overcome the resistance when rotating,resulting in sig-nificantly increase of loss factor.Especially,the damping property of composite with the SGC precured at 160 ℃ is best.The SGC/NBR composites exhibite excellent damping properties in the range of the vibration frequency and strain deformation of the building and could be expected to have important applications as a high damping seismic isolators.

参考文献

[1] Andrei A. Gusev;Kirill Feldman;Olga Guseva.Using Elastomers and Rubbers for Heat-Conduction Damping of Sound and Vibrations[J].Macromolecules,20105(5):2638-2641.
[2] Wang YQ;Wang Y;Zhang HF;Zhang LQ.A novel approach to prepare a gradient polymer with a wide damping temperature range by in-situ chemical modification of rubber during vulcanization[J].Macromolecular rapid communications: Publishing the newsletters of the European Polymer Federation,200614(14):1162-1167.
[3] 梁威;杨青芳;薛丹;祖恩锋;杜江华;马爱洁.减震用橡胶材料及其应用[J].合成橡胶工业,2006(04):313-316.
[4] Ismail H.;Suzaimah S..Styrene butadiene rubber/epoxidized natural rubber blends: dynamic properties, curing characteristics and swelling studies[J].Polymer Testing,20008(8):879-888.
[5] Pattanawanidchai S;Saeoui P;Sirisinha C.Influence of precipitated silica on dynamic mechanical properties and resistance to oil and thermal aging in CPE/NR blends[J].Journal of Applied Polymer Science,20056(6):2218-2224.
[6] Bo Qiao;Xiuying Zhao;Dongmei Yue.A combined experiment and molecular dynamics simulation study of hydrogen bonds and free volume in nitrile-butadiene rubber/hindered phenol damping mixtures[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,201224(24):12339-12348.
[7] M. S. El-Aasser;R. Hu;V. L. Dimonie;L. H. Sperling.Morphology, design and characterization of IPN-containing structured latex particles for damping applications[J].Colloids and Surfaces, A. Physicochemical and Engineering Aspects,19991/3(1/3):241-253.
[8] Wu C.;Nakamoto Y.;Ishida S.;Nitta K.;Kubota S.;Yamagishi T..Organic hybrid of chlorinated polyethylene and hindered phenol. I. Dynamic mechanical properties[J].Journal of Polymer Science, Part B. Polymer Physics,200017(17):2285-2295.
[9] Wu CF.;Nakamoto Y.;Ishida SI.;Kubota S.;Nitta KH.;Yamagishi TA..Organic hybrid of chlorinated polyethylene and hindered phenol. II. Influence of the chemical structure of small molecules on viscoelastic properties[J].Journal of Polymer Science, Part B. Polymer Physics,200011(11):1496-1503.
[10] Wu C.;Nakamoto Y.;Ishida S.;Nitta K.;Yamagishi T..Organic hybrid of chlorinated polyethylene and hindered phenol. III. Influence of the molecular weight and chlorine content of the polymer on the viscoelastic properties[J].Journal of Polymer Science, Part B. Polymer Physics,200022(22):2943-2953.
[11] Song, Meng;Zhao, Xiu-Ying;Chan, Tung W.;Zhang, Li-Qun;Wu, Si-Zhu.Microstructure and Dynamic Properties Analyses of Hindered Phenol AO-80/Nitrile-Butadiene Rubber/Poly(vinyl chloride): A Molecular Simulation and Experimental Study[J].Macromolecular theory and simulations,20151(1):41-51.
[12] Xiu-Ying Zhao;Ping Xiang;Ming Tian.Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance[J].Polymer: The International Journal for the Science and Technology of Polymers,200720(20):6056-6063.
[13] Kohzo ITO.Novel Cross-Linking Concept of Polymer Network:Synthesis,Structure,and Properties of Slide-Ring Gels with Freely Movable Junctions[J].Polymer Journal,20076(6):489-499.
[14] Xiao-Shui Wang;Hyun-Kyoung Kim;Yukihiro Fujita;Atsushi Sudo;Haruo Nishida;Takeshi Endo.Relaxation and Reinforcing Effects of Polyrotaxane in an Epoxy Resin Matrix[J].Macromolecules,20063(3):1046-1052.
[15] Araki J;Kataoka T;Ito K.Preparation of a "sliding graft copolymer'', an organic solvent-soluble polyrotaxane containing mobile side chains, and its application for a crosslinked elastomeric supramolecular film[J].Soft matter,20082(2):245-249.
[16] Zhao, X.-Y.;Cao, Y.-J.;Zou, H.;Li, J.;Zhang, L.-Q..Structure and dynamic properties of nitrile-butadiene rubber/hindered phenol composites[J].Journal of Applied Polymer Science,20126(6):3696-3702.
[17] Kohzo Ito.Slide-ring materials using topological supramolecular architecture[J].Current opinion in solid state & materials science,20102(2):28-34.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%