欢迎登录材料期刊网

材料期刊网

高级检索

抗氧化涂层技术是解决碳/碳复合材料高温抗氧化性的最有效技术途径之一。为了提高材料在1800℃以上的高温抗氧化性能,首次采用包埋法、涂刷法和等离子喷涂法在碳/碳复合材料表面制备出 SiC/MoSi2/ZrO2梯度抗氧化涂层体系。采用 SEM/EDS、结合力和粗糙度测试对涂层表面及断面形貌进行微观分析,利用等离子风洞对整个涂层体系进行氧化试验。结果表明:基体、过渡层和高温抗氧化层之间结合力良好,高温抗氧化层厚度均匀、结构致密。经等离子风洞氧化600 s后,涂层表面温度达到1850℃,氧化质量失重速率仅为3.15×10-6 g/(cm2·s)。表明 SiC/MOSi2/ZrO2梯度抗氧化涂层体系在1800℃以上的高温环境下具有很好的抗氧化性能。

Anti oxidation coating technology is one of the most effective ways to solve the high temperature oxida-tion resistance of carbon/carbon composites.In order to improve the high temperature oxidation resistance of materi-als above 1 800 ℃,a SiC/MoSi2/ZrO2 gradient oxidation resistant coating system was fabricated on surface of the carbon/carbon composites by the pack cementation method,slurry method and plasma spraying process.The sur-face and section morphologies of coating were observed by XRD/EDS,intensity and roughness testing.The total coating system is tested by plasma wind tunnel.Results show that the coating has a compact interfacial bonding strength among matrix,transition layer and high temperature oxidation resistance layer.High temperature oxidation resistance layer has uniform thickness and dense structure.After 600 s plasma wind tunnel oxidation,surface tem-perature of coating reaches up to 1 850 ℃.The oxidation mass loss rate is 3.15×10-6 g/(cm2 ·s).The SiC/Mo-Si2/ZrO2 gradient oxidation resistant coating system has good antioxidant capacity over 1 800 ℃.

参考文献

[1] Fu, QC;Li, HJ;Wang, YJ;Li, KZ;Tao, J.Multilayer oxidation protective coating for C/C composites from room temperature to 1500 degrees C[J].Surface & Coatings Technology,201011(11):1831-1835.
[2] L. He-Jun;F. Qian-Gang;S. Xiao-Hong.SiC whisker-toughened SiC oxidation protective coating for carbon/carbon composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,20063(3):602-605.
[3] Fu Qian-Gang;Li He-Jun;Li Ke-Zhi.SiC whisker-toughened MoSi_2-SiC-Si coating to protect carbon/carbon composites against oxidation[J].Carbon: An International Journal Sponsored by the American Carbon Society,20069(9):1866-1869.
[4] He-Jun Li;Yu-Lei Zhang;Qian-Gang Fu.Oxidation behavior of SiC nanoparticle-SiC oxidation protective coating for carbon/carbon composites at 1773 K[J].Carbon: An International Journal Sponsored by the American Carbon Society,200713(13):2704-2707.
[5] Nitin P. Padture;Maurice Gell;Eric H. Jordan.Thermal Barrier Coatings for Gas-Turbine Engine Applications[J].Science,20025566(5566):280-284.
[6] Albert Feuerstein;James Knapp;Thomas Taylor;Adil Ashary;Ann Bolcavage;Neil Hitchman.Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review[J].Journal of Thermal Spray Technology,20082(2):199-213.
[7] 林锋;蒋显亮.热障涂层的研究进展[J].功能材料,2003(3):254-257,261.
[8] 曾毅;张武装;熊翔.C/C复合材料SiC/ZrB2-MoSi2复合涂层的抗氧化机制[J].复合材料学报,2010(3):50-55.
[9] 丁传贤;刘宣勇;王国成.等离子喷涂纳米氧化锆涂层研究进展[J].中国表面工程,2009(5):1-6,12.
[10] 徐惠彬;宫声凯;刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报,2000(1):7-12.
[11] 吴红丹;裴大婷;张锦化;侯书恩.纳米晶钇稳定氧化锆的制备及表征[J].武汉理工大学学报,2011(2):9-14.
[12] R. S. Lima;B. R. Marple.Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review[J].Journal of Thermal Spray Technology,20071(1):40-63.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%