欢迎登录材料期刊网

材料期刊网

高级检索

基于均匀化理论与有限元方法,针对双向连续纤维增强复合材料(CBFRC),建立了微观代表体积单元(RVE)模型,并预测了界面对CBFRC宏观等效力学性能的影响。在建立的RVE模型中,采用表面内聚力本构关系描述纤维/基体之间的界面。研究结果表明:不同界面刚度下,CBFRC中的基体发生不同形式的初始损伤。与界面断裂能相比,界面刚度和界面强度对CBFRC面外抗拉强度的影响较大,而对CBFRC面内抗拉强度的影响较小,且界面的存在会降低CBFRC整体的抗拉强度。随着纤维体积分数的增加,CBFRC面内的抗拉强度也随之急剧增加,但CBFRC的面外抗拉强度反而有减小的趋势。本文中所提出的方法能够简单有效地对实际复杂的三维纤维增强复合材料进行优化设计。

A micromechanical representative volume element (RVE)model was developed for analyzing effective mechanical behaviors of continuous bidirectional-fiber-reinforced matrix composites (CBFRCs)by combining the homogenization method and finite element method.In the proposed RVE model,the imperfect interfaces between the fiber and the matrix were taken into account by introducing some cohesive contact surfaces.The results show that an imperfect interface with a different interfacial stiffness may induce different damage onsets in the matrix of CBFRCs.Compared with the interfacial fracture energy,both the interfacial stiffness and strength play a more im-portant role in determining the out-of-plane tensile strength of the CBFRCs,while have slight effect on the in-plane tensile strength.The tensile strength of the CBFRCs will be reduced because of the existence of interface.With an increase in the fiber volume fraction,the in-plane tensile strength increases sharply while the out-of-plane tensile strength decreases slightly.The numerical results indicate that the proposed model is simple and efficient for per-forming realistic optimum design on complex three dimensional fiber-reinforced composites.

参考文献

[1] Rajneesh Sharma;Puneet Mahajan;Ramesh Kumar Mittal.Elastic modulus of 3D carbon/carbon composite using image-based finite element simulations and experiments[J].Composite structures,2013Apr.(Apr.):69-78.
[2] 张超;许希武;许晓静.三维多向编织复合材料宏细观力学性能有限元分析研究进展[J].复合材料学报,2015(5):1241-1251.
[3] 田君;钟守炎;石子琼;廖梓龙.界面对硅酸铝短纤维增强AZ91D镁基复合材料蠕变性能的影响[J].复合材料学报,2014(4):955-962.
[4] 方光武;高希光;宋迎东.单向纤维增强陶瓷基复合材料界面滑移规律[J].复合材料学报,2013(4):101-107.
[5] 刘伟.基于内聚力模型的界面破坏分析[J].计算机辅助工程,2013(z2):456-460.
[6] 周储伟;杨卫;方岱宁.内聚力界面单元与复合材料的界面损伤分析[J].力学学报,1999(3):372-377.
[7] T.J. Vaughan;C.T. McCarthy.Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites[J].Composites science and technology,20113(3):388-396.
[8] Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites[J].Composites science and technology,20106(6):p.970.
[9] Martin E.;Leguillon D.;Quenisset JM.;Peters PWM..Conditions for matrix crack deflection at an interface in ceramic matrix composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,19982(2):291-302.
[10] 宋广兴;齐乐华;李贺军.均匀化方法在C/C复合材料中的应用研究[J].科学技术与工程,2007(13):3081-3083,3091.
[11] 黄富华;梁军;杜善义.均匀化方法的ABAQUS实现[J].哈尔滨工业大学学报,2010(3):389-392.
[12] 董其伍;王哲;刘敏珊.渐进均匀化理论研究复合材料有效力学性能[J].材料科学与工程学报,2008(1):72-75.
[13] 单忠德;康怀镕;臧勇;刘丰.三维织造层间增强的纤维棒复合材料细观结构模型及力学性能有限元模拟[J].复合材料学报,2015(1):138-149.
[14] 关志东;刘德博;李星;黎增山.基于界面单元的复合材料层间损伤分析方法[J].复合材料学报,2012(2):130-134.
[15] Ala Tabiei;Ivelin Ivanov.Materially and geometrically non-linear woven composite micro-mechanical model with failure for finite element simulations[J].International journal of non-linear mechanics,20042(2):175-188.
[16] 吴志凯;江五贵;夏宇峰.均匀化有限元法预测双向纤维增强复合材料力学性能[J].南昌航空大学学报(自然科学版),2015(4):51-56.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%