硅橡胶耐热性不佳严重制约着其在耐高温领域的应用。针对这一问题,分别采用低熔点氧化物 Sb2 O3和Bi2 O3作为助溶剂,研究其对硅藻土/硅橡胶复合材料可瓷化性能的影响。采用 TG分析 Sb2 O3和 Bi2 O3对硅藻土/硅橡胶复合材料的热稳定性影响,万能力学试验仪测试热解后试样的弯曲强度,场发射扫描电镜(FESEM)和能谱仪(EDS)分析热解产物的微观形貌和成份,XRD 探索复合材料的可瓷化机制。结果表明:Sb2 O3和 Bi2 O3金属氧化物会加速硅橡胶的分解,但可以明显提高热解后试样的弯曲强度。FESEM观测到 Sb2 O3和 Bi2 O3有助于复合材料在热解过程中形成连续的桥连结构,通过EDS分析计算可知,Sb2 O3与SiO2,Bi2 O3与SiO2在热解过程中可能发生共熔反应,有助于陶瓷化结构的形成。XRD表明,加入助溶剂后的硅藻土/硅橡胶复合材料的热解后形成非晶相结构,提高陶瓷层的强度。
The poor heat resistance of silicone rubber seriously restricts its application in the field of high tempera-ture resistance.To solve this problem,low melting oxide Sb2 O3 and Bi2 O3 were used as fluxing agent to study the effects on the ceramizable properties of diatomite/silicone rubber composites.The thermal stability of Sb2 O3 and Bi2 O3 on diatomite/silicone rubber composites was analyzed by TG,the bending strength after pyrolysis was tested by universal mechanical testing apparatus,field emission scanning electron microscope (FESEM)and energy disper-sive spectrometer (EDS)were used to analyze the microstructure and composition of the pyrolysis products,and ceramic mechanism was studied by XRD.The results show that metal oxide of Sb2 O3 and Bi2 O3 can accelerate the decomposition of silicone rubber,but they can obviously improve the bending strength of the specimen after pyroly-sis.Bi2 O3 and Sb2 O3 are contribute to the formation of a continuous bridge structure in the process of composites pyrolysis by FESEM.Through EDS analysis,eutectic phenomenon may be occurring between SiO2 and Sb2 O3 , Bi2 O3 and SiO2 in the process of composites pyrolysis and help to form a ceramic structure.XRD show that the amorphous phase structure is formed after the addition of fluxing agent to diatomite/silicone rubber composite, which can improve the strength of the ceramics.
参考文献
[1] | 黄海明;杜善义;吴林志;王建新.C/C复合材料烧蚀性能分析[J].复合材料学报,2001(3):76-80. |
[2] | 梁军;周振功;杜善义.树脂基材料的高温烧蚀变形[J].复合材料学报,2002(3):83-87. |
[3] | 谢文峰;李云霞;秦岩;黄志雄.有机硅聚合物复合材料陶瓷化研究进展[J].武汉理工大学学报,2013(2):53-56,70. |
[4] | 聂梅;范召东.阻燃防火硅橡胶研究进展[J].化工新型材料,2008(2):8-9. |
[5] | 杨洪;申屠宝卿.硅橡胶的耐热稳定性[J].合成橡胶工业,2005(3):229-233. |
[6] | 邵海彬;张其土;吴丽;王庭慰.可瓷化硅橡胶的制备与性能[J].南京工业大学学报(自然科学版),2011(1):48-51. |
[7] | 田挺胜;张军.低熔点玻璃粉/硅橡胶可瓷化复合材料的制备与性能[J].橡胶工业,2015(5):273-277. |
[8] | 李跃 .硅橡胶复合材料的导电响应行为和可陶瓷化性能的研究[D].上海交通大学,2012. |
[9] | J. Mansouri;R.P. Burford;Y.B. Cheng.Pyrolysis behaviour of silicone-based ceramifying composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20061/2(1/2):7-14. |
[10] | Mansouri J;Burford RP;Cheng YB;Hanu L.Formation of strong ceramified ash from silicone-based compositions[J].Journal of Materials Science,200521(21):5741-5749. |
[11] | Hanu LG;Simon GP;Cheng YB.Thermal stability and flammability of silicone polymer composites[J].Polymer Degradation and Stability,20066(6):1373-1379. |
[12] | L.G. Hanu;G.P. Simon;Y.B. Cheng.Preferential orientation of muscovite In ceramifiable silicone composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20051/2(1/2):180-187. |
[13] | Mansouri J;Wood CA;Roberts K;Cheng YB;Burford RP.Investigation of the ceramifying process of modified silicone-silicate compositions[J].Journal of Materials Science,200715(15):6046-6055. |
[14] | Anyszka, R.;Bielinski, D. M.;Pedzich, Z.;Szumera, M..Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites[J].Journal of thermal analysis and calorimetry,20151(1):111-121. |
[15] | 苏柳梅;樊星;尤红梅;李明曦;郑峰.硅橡胶/黏土可瓷化复合材料的热行为及微观结构[J].粉末冶金材料科学与工程,2011(6):856-863. |
[16] | 亢庆卫;罗权焜.以三氧化二锑为协效剂的复合阻燃剂对MVQ硫化胶阻燃性能的影响[J].橡胶工业,2004(11):651-655. |
[17] | Allen NS.;Corrales T.;Childs A.;Liauw CM.;Catalina F. Peinado C.;Minihan A.;Aldcroft D.;Edge M..Ageing and stabilisation of filled polymers: an overview[J].Polymer Degradation and Stability,19982(2):183-199. |
[18] | 江红涛 .硅酸铋粉体制备和熔体性能研究[D].陕西科技大学,2013. |
[19] | 翁俊梅,姜胜林,许毓春,黄国贤.氧化铋氧化锑热处理对氧化锌压敏电阻的影响[C].中国电子学会敏感技术分会电压敏专业学部第十八届学术年会论文集,2011:33-37. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%