欢迎登录材料期刊网

材料期刊网

高级检索

基于等效夹杂方法,引入一种数值建模方法用于求解 Hertz 接触载荷作用下复合材料次表面应力场。通过与有限元方法的对比验证本方法的有效性和优越性;讨论不同形状增强体深度、材料、尺寸、体积分数、相对位置等分布参数对基体应力场的影响。分析结果表明,双增强体接触模型中,次表面最大 von Mises 应力随增强体深度和半径的增大呈先增大后减小趋势,随增强体与基体之间材料差异的增大而单调递增;增强体体积分数及相对位置将对基体应力分布产生较大影响。通过钛基复合材料滚动接触疲劳实验验证了本文方法处理复合材料接触性能的能力。

A new modeling method was introduced to solve the subsurface stress field of composites under Hertzian contact loads based on the equivalent inclusion method.The comparisons between the computation results solved by the present method and the finite element method demonstrated the effectiveness and advantage of the new method. The parametric study was carried out to investigate the influences of depth,shape,material property,volume fraction and relative location of reinforcements with different shapes on the stress field of the matrix.The analysis results reveal that the maximum von Mises stress is altered due to the changes in the depth,radius and material properties of the reinforcements for the double-reinforcement model,and the volume fraction and relative position of distributed reinforcements have significant influences on the stress field of the matrix.The rolling contact fatigue (RCF)life experiments of titanium-based composites were conducted,the corresponding results verify the capability of the proposed method on solving the contact performance of composites.

参考文献

[1] 尹健;张红波;熊翔;左劲旅.不同速度下C/C-Cu复合材料的摩擦磨损性能[J].华中科技大学学报(自然科学版),2009(12):112-115.
[2] 王新平;肖金坤;张雷;周科朝.银合金粉末粒度对Ag-MoS2复合材料摩擦磨损性能的影响[J].中国有色金属学报,2012(10):2811-2817.
[3] 蔺绍江;熊惟皓;王赛玉;石其年.增强体含量对 TiC/316L 复合材料性能的影响[J].粉末冶金材料科学与工程,2013(3):373-378.
[4] P.K. Deshpande;R. Y. Lin.Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20061/2(1/2):137-145.
[5] Wenlin Ma;Jinjun Lu.Effect of Sliding Speed on Surface Modification and Tribological Behavior of Copper-Graphite Composite[J].Tribology letters,20112(2):363-370.
[6] Xiaoqing Jin;Zhanjiang Wang;Qinghua Zhou;Leon M. Keer;Qian Wang.On the Solution of an Elliptical Inhomogeneity in Plane Elasticity by the Equivalent Inclusion Method[J].Journal of Elasticity,20141(1):1-18.
[7] H. M. Shodja;A. S. Sarvestani.Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method[J].Journal of Applied Mechanics,20011(1):3-10.
[8] Benedikt B;Lewis M;Rangaswamy P.On elastic interactions between spherical inclusions by the equivalent inclusion method[J].Computational Materials Science,20063(3):380-392.
[9] Jin, XQ;Keer, LM;Wang, Q.New Green's function for stress field and a note of its application in quantum-wire structures[J].International Journal of Solids and Structures,200921(21):3788-3798.
[10] 周青华;王家序;王战江;金晓清.二维非均质材料应力场的数值化计算方法[J].复合材料学报,2014(4):1037-1045.
[11] Liu, S.;Jin, X.;Wang, Z.;Keer, L.M.;Wang, Q..Analytical solution for elastic fields caused by eigenstrains in a half-space and numerical implementation based on FFT[J].International Journal of Plasticity,2012:135-154.
[12] Shuangbiao Liu;Qian Wang.Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm[J].Journal of Tribology,20021(1):36-45.
[13] Shuangbiao Liu;Qian Wang;Geng Liu.A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20001/2(1/2):101-111.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%