欢迎登录材料期刊网

材料期刊网

高级检索

为了探究莫来石纤维增强 SiO2气凝胶复合材料的拉伸和层间剪切性能,开展了相关试验。首先,进行了复合材料在室温下的面内拉伸试验,获得了复合材料的室温面内拉伸模量;然后,采用引伸计方法和数字图像相关法分别对拉伸变形进行测量,并对2种方法进行了对比分析;最后,开展了不同温度下的层间剪切试验,研究了复合材料在不同温度下的层间剪切性能,并对其微观结构进行了分析。结果表明:复合材料的拉伸模量约为285.17 MPa;由引伸计方法测得的拉伸变形计算出的拉伸模量比数字图像相关法获得的拉伸模量高2.4%;在室温和高温下,试样呈现明显的层间剪切破坏;对复合材料的微观分析发现,SiO2气凝胶基体主要分布在层间区域,增强纤维主要分布在铺层内。所得结论表明莫来石纤维增强 SiO2气凝胶复合材料拉伸和层间性能较差,当承受层间载荷时,SiO2气凝胶基体起主要作用,且温度对复合材料的性能影响较大。

In order to investigate the tensile and interlaminar shear properties of mullite fiber reinforced SiO2 aero-gel composites,related tests were conducted.The in-plane tension tests of the composites were carried out at room temperature firstly,and the in-plane tensile modulus of the composite at room temperature was obtained.Then,the extensometer method and digital image correlation method were adopted respectively to measure the tensile deforma-tions,and the two methods were compared and analyzed.Finally,the interlaminar shear tests at different tempera-tures were conducted,the interlaminar shear properties of the composites at different temperatures were investiga-ted,and the microstructures were analyzed.The results show that the tension modulus of the composites is about 285.17 MPa.The tensile modulus calculated by the tensile deformation obtained by the extensometer method is 2.4% higher than the tensile modulus obtained by the digital image correlation method.The specimens present obvi-ous interlaminar shear damage at room temperature and high temperature.The microscopic analyses on composites find that SiO2 aerogel matrix mainly distributes in interlaminar areas and reinforced fibers mainly distributes in plies. The conclusions obtained show that the tensile and interlaminar properties of mullite fiber reinforced SiO2 aerogel composites are relatively poor,SiO2 aerogel matrix plays a main role under interlaminar shear load,and temperature has a great influence on the properties of the composites.

参考文献

[1] 秦国彤;门薇薇;魏微;李大鹏.气凝胶研究进展[J].材料科学与工程学报,2005(2):293-296.
[2] 冯坚;高庆福;冯军宗;姜勇刚.纤维增强SiO_2气凝胶隔热复合材料的制备及其性能[J].国防科技大学学报,2010(1):40-44.
[3] Parmenter KE.;Milstein F..Mechanical properties of silica aerogels[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,19983(3):179-189.
[4] 高庆福 .纳米多孔SiO<,2>、Al<,2>O<,3>气凝胶及其高效隔热复合材料研究[D].国防科学技术大学,2009.
[5] Nikhil Gupta;William Ricci.Processing and compressive properties of aerogel/epoxy composites[J].Journal of Materials Processing Technology,20081-3(1-3):178-182.
[6] 米春虎;姜勇刚;石多奇;韩世伟;孙燕涛;杨晓光;冯坚.陶瓷纤维增强氧化硅气凝胶复合材料力学性能试验[J].复合材料学报,2014(3):635-643.
[7] 何新波;杨辉;张长瑞;周新贵.连续纤维增强陶瓷基复合材料概述[J].材料科学与工程,2002(2):273-278,262.
[8] Shi, D.;Sun, Y.;Feng, J.;Yang, X.;Han, S.;Mi, C.;Jiang, Y.;Qi, H..Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO_2 aerogel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:25-31.
[9] 高峰;矫桂琼;贾普荣;管国阳.复合材料层间增韧机理的有限元分析[J].机械强度,2007(1):63-66.
[10] 潘兵;吴大方;高镇同.基于数字图像相关方法的非接触高温热变形测量系统[J].航空学报,2010(10):1960-1967.
[11] Jean Phalippou;Florence Despetis;Sylvie Calas;Annelise Faivre;Philippe Dieudonne;Robert Sempere;Thierry Woignier.Comparison between sintered and compressed aerogels[J].Optical materials,20042(2):167-172.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%