以褐煤萃取物为炭前驱体,MgO为阻隔剂,KOH为活化剂,在800℃惰性气氛下制备出类石墨状多孔炭材料.对该多孔炭材料进行了红外(FTIR)、X射线衍射(XRD)、透射电镜(TEM)和拉曼(Raman)表征.以活化前和活化后多孔炭为电极材料,利用循环伏安、恒电流充放电、交流阻抗对其进行了电化学电容性能评价和比较.结果表明:活化后炭材料呈现多孔的薄膜状,比表面积高达1396 m2/g,而活化前炭材料比表面积仅为138.4 m2/g.当电流密度为l A/g和4A/g时,活化后炭材料比电容分别为533 F/g和390 F/g;而活化前炭材料对应的比电容为366 F/g和198 F/g.在电流密度为5 A/g下循环8000圈后,活化前后炭材料的电容保持率分别为72.5%和89.6%.可见,经过KOH活化后的炭材料比电容和电化学稳定性有了显著提高.该研究证明阻隔剂和活化剂的使用,能够获得高度柔性的高电容性能的类石墨状多孔炭.
参考文献
[1] | 汪晓芹;周安宁;熊善新;徐强强;褚佳;宫铭.无烟煤/聚苯胺复合材料的制备与其电容特性的研究[J].化工新型材料,2014(7):196-198,204. |
[2] | 万厚钊;缪灵;徐葵;亓同;江建军.MnO2基超级电容器电极材料[J].化工学报,2013(3):801-813. |
[3] | 卢云;元杰;宫岩坤;胡永达;杨春.导电剂对氧化钌基超级电容器电极材料性能的影响?[J].功能材料,2014(z2):101-104,109. |
[4] | K. Kierzek;E. Frackowiak;G. Lota;G. Gryglewicz;J. Machnikowski.Electrochemical capacitors based on highly porous carbons prepared by KOH activation[J].Electrochimica Acta,20044(4):515-523. |
[5] | Xiaojun He;Jiangwei Lei;Yejing Geng;Xiaoyong Zhang;Mingbo Wu;Mingdong Zheng.Preparation of microporous activated carbon and its electrochemicalperformance for electric double layer capacitor[J].The journal of physics and chemistry of solids,20093/4(3/4):738-744. |
[6] | Zhang CX;Long DH;Xing BL;Qiao WM;Zhang R;Zhan L;Liang XY;Ling LC.The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal[J].Electrochemistry communications,200811(11):1809-1811. |
[7] | Xian Li;Ryuichi Ashida;Kouichi Miura.Preparation of High-Grade Carbonaceous Materials Having Similar Chemical and Physical Properties from Various Low-Rank Coals by Degradative Solvent Extraction[J].Energy & Fuels,2012Nov./Dec.(Nov./Dec.):6897-6904. |
[8] | Ye Sun;Xingjun Wang;Tingting Feng;Guangsuo Yu;Fuchen Wang.Evaluation of Coal Extraction with Supercritical Carbon Dioxide/1-Methyl-2-pyrrolidone Mixed Solvent[J].Energy & Fuels,2014Jan./Feb.(Jan./Feb.):816-824. |
[9] | 徐国忠;吴红运;高丽娟;吴红霞;金文武.水蒸汽活化兰炭粉制备多级孔活性炭及性能表征[J].炭素技术,2015(2):31-35,45. |
[10] | 冒爱琴;王华;谈玲华;蔺相阳;潘仁明.活性炭表面官能团表征进展[J].应用化工,2011(7):1266-1270. |
[11] | Mi, Hongyu;Zhou, Jiapan;Zhao, Zongbin;Yu, Chang;Wang, Xuzhen;Qiu, Jieshan.Block copolymer-guided fabrication of shuttle-like polyaniline nanoflowers with radiating whiskers for application in supercapacitors[J].RSC Advances,20152(2):1016-1023. |
[12] | 袁美蓉;赵方辉;刘伟强;朱永法;王臣.超级电容器用石墨烯极片的制备和性能[J].功能材料,2013(19):2810-2813,2818. |
[13] | Qiang Wang;Qi Cao;Xianyou Wang;Bo Jing;Hao Kuang;Ling Zhou.A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors[J].Journal of Power Sources,2013Mar.1(Mar.1):101-107. |
[14] | Marta Sevilla;Antonio B. Fuertes.Direct Synthesis of Highly Porous Interconnected Carbon Nanosheets and Their Application as High- Performance Supercapacitors[J].ACS nano,20145(5):5069-5078. |
[15] | 周颖;王志超;王春雷;王六平;许钦一;邱介山.大孔-介孔分级孔结构炭材料制备及性能研究[J].无机材料学报,2011(2):145-148. |
[16] | 汪丽丽;邢瑞光;张邦文;侯渊.功能化石墨烯/聚苯胺复合电极材料的制备和电化学性能[J].物理化学学报,2014(9):1659-1666. |
[17] | Jiali Shen;Chongyang Yang;Xingwei Li.High-Performance Asymmetric Supercapacitor Based on Nanoarchitectured Polyaniline/Graphene/Carbon Nanotube and Activated Graphene Electrodes[J].ACS applied materials & interfaces,201317(17):8467-8476. |
[18] | 朱晨;张远亮;刘洪涛.氧化-活化处理的超级电容器用高比电容活性炭[J].中南大学学报(自然科学版),2012(12):4638-4645. |
[19] | 谢应波;张维燕;张睿;成果;张传祥;凌立成.KOH与NaOH活化法所制活性炭孔结构及电化学性能的比较[J].炭素技术,2008(2):9-14. |
[20] | 孟庆函;刘玲;宋怀河;张睿;凌立成.炭气凝胶为电极的超级电容器电化学性能的研究[J].无机材料学报,2004(3):593-598. |
[21] | 苗小丽;邓正华.电化学超级电容器电极材料的研究进展[J].合成化学,2002(2):106-109,119. |
[22] | 张治安;邓梅根;汪斌华;胡永达;杨邦朝.超级电容器用纳米炭黑电极的电化学性能[J].功能材料,2005(2):304-306,310. |
[23] | 王凯;张莉;高源;樊宇.模板法制备有序介孔炭及其超电性能研究[J].功能材料,2013(1):136-138. |
[24] | Huai-Ping Cong;Xiao-Chen Ren;Ping Wang;Shu-Hong Yu.Flexible graphene-polyaniline composite paper for high-performance supercapacitor[J].Energy & environmental science: EES,20134(4):1185-1191. |
[25] | S. T. Senthilkumar;R. Kalai Selvan;J. S. Melo.High Performance Solid-State Electric Double Layer Capacitor from Redox Mediated Gel Polymer Electrolyte and Renewable Tamarind Fruit Shell Derived Porous Carbon[J].ACS applied materials & interfaces,201321(21):10541-10550. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%