采用不同Al含量的聚铝碳硅烷(PACS)为先驱体,通过不同的PACS纤维不熔化方法调节O引入量,制备了具有不同Al和O含量的连续SiAlCO纤维.研究了SiAlCO纤维经高温处理转变为Si(A1)C纤维过程中,Al、O含量对SiCxOy相分解、β-SiC结晶生长和微观形貌的影响.结果表明:纤维中SiCxOy相的分解温度区间为1300~1700℃,与A1、O含量基本无关;提高Al含量可减少纤维在高温下表面形成粗大SiC结晶颗粒和相互连通的气孔,并且对1700℃以上p-SiC结晶生长的抑制作用增强,有利于烧结致密化;利用纤维中O元素,以放出CO或CO2方式脱除富余C,但O含量过高导致气体逸出时产生较大孔洞,不利于烧结致密化.当A1和O含量分别约为0.6wt%和9wt%时,SiAlCO纤维经高温处理后能得到具有较大β-SiC晶粒尺寸的致密化Si(Al)C纤维.
参考文献
[1] | Shaoming Dong;Yutai Katoh;Akira Kohyama.Preparation of SiC/SiC Composites by Hot Pressing, Using Tyranno-SA Fiber as Reinforcement[J].Journal of the American Ceramic Society,20031(1):26-32. |
[2] | Yutai Katoh;Kazumi Ozawa;Chunghao Shih;Takashi Nozawa;Robert J. Shinavski;Akira Hasegawa;Lance L. Snead.Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,20141/3(1/3):448-476. |
[3] | T. Abe;H. Kishimoto;N.Nakazato;J.S. Park;H.C. Jung;Y. Kohno;A. Kohyama.SiC/SiC composite heater for IFMIF[J].Fusion engineering and design,20127/8(7/8):1258-1260. |
[4] | 王得印;毛仙鹤;宋永才;王应德.一种具有稳定富碳表层的SiC纤维的制备与性能[J].无机材料学报,2009(6):1209-1213. |
[5] | 王得印;宋永才;简科.组成和结构对连续SiC纤维电阻率的影响[J].无机材料学报,2012(2):162-168. |
[6] | Bunsell AR;Piant A.A review of the development of three generations of small diameter silicon carbide fibres[J].Journal of Materials Science,20063(3):823-839. |
[7] | 赵大方;王海哲;李效东.先驱体转化法制备SiC纤维的研究进展[J].无机材料学报,2009(6):1097-1104. |
[8] | Dong SM.;Labrugere C.;Lahaye M.;Guette A.;Bruneel JL. Couzi M.;Naslain R.;Jiang DL.;Chollon G..Characterization of nearly stoichiometric SiC ceramic fibres[J].Journal of Materials Science,200110(10):2371-2381. |
[9] | Cao F.;Kim DP.;Li XD.;Feng CX.;Song YC..Synthesis of polyaluminocarbosilane and reaction mechanism study[J].Journal of Applied Polymer Science,200213(13):2787-2792. |
[10] | Yuxi Yu;Jinhua Tai;Xueyuan Tang.Continuous Si-C-O-Al fiber derived from aluminum-containing polycarbosilane precursor[J].Composites. Part A, Applied science and manufacturing,20087(7):1101-1105. |
[11] | Morishita K;Ochiai S;Okuda H;Inshikawa T;Sato M;Inoue T.Fracture toughness of a crystalline silicon carbide fiber (Tyranno-SA3((R)))[J].Journal of the American Ceramic Society,20068(8):2571-2576. |
[12] | Lifu Chen;Li Zhang;Zhihui Cai.Effects of Oxidation Curing and Sintering Additives on the Formation of Polymer-Derived Near-Stoichiometric Silicon Carbide Fibers[J].Journal of the American Ceramic Society,20082(2):428-436. |
[13] | Michio Takeda;Yoshikazu Imai.Thermal stability of SiC fiber prepared by an irradiation-curing process[J].Composites science and technology,1999special section(special section):793-79. |
[14] | HUE QUAN LY;R. TAYLOR;R. J. DAY;FRANK HEATLEY.Conversion of polycarbosilane (PCS) to SiC-based ceramic Part II. Pyrolysis and characterisation[J].Journal of Materials Science,200116(16):4045-4057. |
[15] | A.L. Ortiz;F. Sanchez-Bajo;F.L. Cumbrera.X-ray powder diffraction analysis of a silicon carbide-based ceramic[J].Materials Letters,20012(2):137-145. |
[16] | Nathan S. Jacobson;Sara E. Kline.A Thermoanalytical Study of the Conversion of Amorphous Si-Ti-C-O Fibers to SiC[J].International journal of applied ceramic technology,20124(4):816-822. |
[17] | T. Shimoo;K. Okamura.Thermal stability of low-oxygen SiC fibers fired under different conditions[J].Journal of Materials Science,199922(22):5623-5631. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%