欢迎登录材料期刊网

材料期刊网

高级检索

采用Desal-DK有机纳滤膜分别对低浓度范围(1~50 mol/m3)的KCl、NaCl、Na2SO4、K2SO4、MgCl2水溶液进行纳滤实验,考察盐的浓度及类型对截留率的影响,结合道南细孔-介电DSPM-DE模型计算等效荷电密度(Xd),孔内介电常数(εp),采用DSPM模型计算等效膜孔半径(rp),研究不同类型盐的截留率变化和Xd、εp、rp的关系.结果表明,Na2SO4、K2SO4的截留率变化趋势和KCl、NaCl相同,随着盐浓度的增加而降低,其原因归结于随着浓度的增加| Xd|增加,电荷屏蔽作用增强,道南电势减弱;MgCl2的截留率随着盐浓度的增加而升高,原因是浓度的增加Mg2+与膜的羧基不断发生特性结合,| Xd| 升高,εp降低,静电排斥作用变大和介电排斥作用增强的双重作用.

Salt solutions(KCl,NaCl,Na2SO4,K2 SO4,MgCl2) were filtrated with a commercially available DK nanofiltration membrane to evaluate effects of concentration and type of salt in the feed side on the membrane performance,the concentration of them was in the range from 1 to 50 mol/m3.The Donnan steric pore and dielectric exclusion (DSPM-DE) model and DSPM model were applied to calculate volumetric membrane charge values,dielectric constant,and pore radius,to analyze the relationship between the parameters and rejection of salt.In the low concentration range,the results showed that the rejection of Na2SO4 and K2SO4 showed the same changing rule as the KCl and NaCl,the membrane charge density(|Xd |) increased when the concentration of salt solutions increased,the rejection decreased duo to charge screening.The rejection of MgCl2 increased with increasing of the concentration,the | Xd | of salt solution decreased first and then increased,duo to special combination of Mg2+ with carboxyl.The electrostatic repulsion and the dielectric exclusion influenced the rejection of MgCl2 together.

参考文献

[1] C. Labbez;P. Fievet;A. Szymczyk;A. Vidonne;A. Foissy;J. Pagetti.Retention of mineral salts by a polyamide nanofiltration membrane[J].Separation and Purification Technology,20031(1):47-55.
[2] Carolina Mazzoni;Serena Bandini.On nanolillration Desal-5 DK performances with calcium chloride-water solutions[J].Separation and Purification Technology,20062(2):232-240.
[3] Mazzoni C;Bruni L;Bandini S.Nanofiltration: Role of the electrolyte and pH on desal DK performances[J].Industrial & Engineering Chemistry Research,20078(8):2254-2262.
[4] W.Richard Bowen;Julian S.Welfoot;Paul M.Williams.Linearized transport model for nanofiltration: development and assessment[J].AIChE Journal,20024(4):760-773.
[5] Déon, S.;Escoda, A.;Fievet, P..A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes[J].Chemical Engineering Science,201112(12):2823-2832.
[6] 戚茂飞;武海洋;刘文强;杨刚;邢卫红;徐南平.CaCl2对葡萄糖纳滤截留率的影响[J].南京工业大学学报(自然科学版),2011(4):103-106.
[7] Johan Schaep;Carlo Vandecasteele;A.Wahab Mohammad.Modelling the retention of ionic components for different nanofiltration membranes[J].Separation and Purification Technology,20010(0):169-179.
[8] W. Richard Bowen;Hilmi Mukhtar.Characterisation and prediction of separation performance of nanofiltration membranes[J].Journal of Membrane Science,19962(2):263-274.
[9] A.W. Mohammad;N. Hilal;H. Al-Zoubi;N.A. Darwish.Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes[J].Journal of Membrane Science,20071/2(1/2):40-50.
[10] Yoshikata Koga;Hideki Katayanagi;James V.Da vies.The Effects of Chloride Salts of Some Cations on the Molecular Organization of H_2O.Towards Understanding the Hofmeister Series.II[J].Bulletin of the Chemical Society of Japan,20069(9):1347-1354.
[11] Zhang YJ;Cremer PS.Interactions between macromolecules and ions: the Hofmeister series[J].Current opinion in chemical biology,20066(6):658-663.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%