欢迎登录材料期刊网

材料期刊网

高级检索

目的:研究钴基合金-不锈钢梯度强化材料抵抗低应力多碰塑性变形的能力,以改善单一涂层应力集中问题。方法制备指数梯度和线性梯度涂层试样,与304不锈钢基体试样一起进行低应力多碰实验,比较分析3种材料的塑性变形量、硬度变化量与金相组织变化。结果线性梯度涂层试样的累积塑性变形量约为304不锈钢的1/2,指数梯度涂层试样的累积塑性变形量约为304不锈钢的1/3;两种涂层试样均存在循环硬化及软化现象,硬度值由表及里逐渐减小,多碰后塑性变形符合“趋表效应”。结论两种梯度涂层强化材料的抗低应力多碰塑变能力均明显优于未强化材料,且指数梯度强化材料性能优于线性梯度强化材料。

ABSTRACT:Objective To study the resistance of Cobalt-based alloy-stainless steel gradient reinforcement materials against low-stress multi-touch plastic deformation, in order to improve the stress concentration problem of single coating. Methods The samples were prepared by laser cladding Cobalt-based alloy powder with exponential and linear weight fraction on substrates. Low-stress multi-touch experiment was conducted against the 304 stainless steel substrate. The plastic deformation, hardness and microstruc-ture of all coatings were analyzed and compared in details. Results The cumulative plastic deformation of the sample with addition of linear gradient weight fraction Cobalt-based alloy powder was reduced by about 50% compared to the 304 stainless steel sub-strate, while the cumulative plastic deformation of the sample with addition of exponential gradient weight fraction Cobalt-based al-loy powder was reduced by about 67% compared to the 304 stainless steel substrate. Although cyclic hardening and cyclic softening phenomena existed in both Cobalt-based gradient reinforced samples, the overall variation trend of the micro-hardness was that mi- cro-hardness values gradually decreased from the surface to the substrate. Besides, the plastic deformation of reinforced materials conformed to "skin effect" after multi-touch. Conclusion The resistance of both gradient reinforced coatings against low-stress multi-touch plastic deformation was much better than that of the substrate without reinforcement, and the properties of exponential gradient reinforced samples were better than those of the linear reinforced samples.

参考文献

[1] 傅戈雁,石世宏.多冲碰撞载荷下激光涂层的接触损伤分析[J].激光与红外,2006(07):587-589.
[2] 吴炯杰 .碰撞能对低应力多碰塑性变形的影响研究及建模[D].苏州大学,2013.
[3] 刘磊 .涂层强化材料低应力多碰塑性累积研究与建模[D].苏州大学,2010.
[4] 徐峰,李文虎,艾桃桃,王同乐,付蕾.Q235钢表面氩弧熔覆TiC复合涂层的组织与性能[J].表面技术,2012(05):53-55.
[5] TiN涂层刀具对20CrMo钢的干切削性能的影响及磨损机理[J].中南大学学报(自然科学版),2014(01):64-70.
[6] 周思华,晁明举,刘奎立,郭艳花.原位生成WC-B4 C增强镍基激光熔覆层及其性能研究[J].表面技术,2014(03):25-30.
[7] 张程显;徐滨士;王海斗.ZrO2/NiCoCrAlY功能梯度涂层残余应力分析[J].材料热处理学报,2005(02):86-89.
[8] Kai U. Claussen;Reiner Giesa;Hans-Werner Schmidt .Longitudinal polymer gradient materials based on crosslinked polymers[J].Polymer: The International Journal for the Science and Technology of Polymers,2014(1):29-38.
[9] Dongjiang Wu;Xiaokang Liang;Qian Li .Fabrication of SS316L/Ni25 Functionally Gradient Materials using Laser Engineered Net Shaping[J].Materials Science Forum,2011(Pt.2):803-806.
[10] GALKIN M P;LIBMAN M A;ESTRIN E I .Phase Transi-tions Use for Gradient Materials Creation[J].Materials Sci-ence,2014,3:25-28.
[11] ZHANG N;CHEN S P;LIANG L J et al.In-situ Synthesis of(TiC)pNi/TiAl/Ti Functional Gradient Materials Via Field-activated[J].RARE METAL MATERIALS AND ENGINEERING,2011,40(04):25-38.
[12] SURYAKUMAR S;SOMASHEKARA M A.Manufacture of Functionally Gradient Materials Using Weld-deposition[A].[s.l.]:SLSFF,2013:939-949.
[13] 徐桃 .多次冲击碰撞载荷下T10钢的累积宏观塑性变形及其机理分析[D].苏州大学,2011.
[14] 杨胶溪,王智勇,左铁钏.高功率半导体激光熔覆絮状WC-Ni基超硬复合材料[J].中国激光,2009(12):3262-3266.
[15] 石荣;陈大明;康沫狂.16NiCo钢的循环硬化/软化特性及机理[J].钢铁,1997(04):55-59.
[16] 戴枝荣;张明远.工程材料[M].北京:高等教育出版社,2006
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%