欢迎登录材料期刊网

材料期刊网

高级检索

目的:优化复合涂层的熔覆工艺参数,获得综合性能优异的WC/Co-Cr复合涂层。揭示复合涂层的相结构、组织构成及界面特性。方法采用YAG固体激光器在45钢上熔覆WC/Co-Cr复合涂层,以电流、频率、脉宽、扫描速度作为变量,设计四因素三水平正交试验,对熔覆效果进行评分,获得最佳参数组合。通过XRD,XRF,OM,EMPA等分析手段对复合涂层进行表征。结果电流对熔覆效果的影响最显著,其次为频率,再次之为激光扫描速度,脉宽的影响显著性最小。随WC含量增加,激光脉宽应增加,而激光扫描速度应该适当减小。复合涂层的显微组织形貌主要为固溶体上分布着共晶组织以及金属间化合物、碳化物,还有由成分过冷导致的胞状组织。复合涂层的物相组成包括CrCo,WC,Cr7 C3,Cr3 C2等。结论采用WC质量分数10%的熔覆粉末,最佳熔覆工艺组合为:电流380 A,频率40 Hz,脉宽1 ms,扫描速度8 mm/s。采用WC质量分数20%的熔覆粉末,最佳熔覆工艺组合为:电流380 A,频率40 Hz,脉宽1.5 ms,扫描速度6 mm/s。复合涂层与混合粉末相比,相组成发生了变化,有金属间化合物、碳化物等强化相产生,且元素在界面的分布呈现过渡式变化,这对涂层的综合性能有利。

ABSTRACT:Objective To optimize the laser cladding operation of excellent WC/Co-Cr composite coating, and to figure out the phase, microstructure and distribution of chemical elements of composite coating. Methods YAG Laser was utilized to carry out WC/Co-Cr composite coating on 45 carbon steel. Orthogonal experiments were performed which contains four factors at three differ-ent levels. Four factors were current, frequency, pulse width and scanning speed. Several characterization techniques, such as XRD, XRF, OM and EMPA, were employed to characterize the phases, structure and interface of WC/Co-Cr Composite coating. Results The influence of the Electric current to the cladding effect was the most significant, followed with the frequency, the laser scanning speed, and then the Pulse-width. Laser pulse width should be increased, conversely, laser scanning speed should be re-duced with the increase of WC content. The microstructure of composite coating are eutectic, carbide and intermetallic distributing on solid solution. In addition, cell structure caused by composition undercooling was observed on the micro-graph. The phases of coating are CrCo, WC, Cr7 C3 and Cr3 C2 . Conclusion Current is the main influence factor for Laser cladding. Two optimum tech-nological parameters combinations are respectively 380 A, 40 Hz, 1 ms, 8 mm/s for coating which contains 10wt%WC, and 380 A, 40 Hz, 1. 5 ms, 6 mm/s for coating which contains 20wt%WC. Several new phases were observed after laser cladding, such as carbide and intermetallic. The distribution of chemical element along with the cross section are transitional. Our results suggest there is a transition region between the coating and substrate.

参考文献

[1] 汪新衡,钱书琨,刘安民,朱航生.激光熔覆纳米Al2O3颗粒增强Ni基合金涂层界面组织和高温热腐蚀性能[J].表面技术,2013(06):23-26,47.
[2] 宋建丽,李永堂,邓琦林,胡德金.激光熔覆成形技术的研究进展[J].机械工程学报,2010(14):29-39.
[3] 张娈,董闯,王存山,王清.45钢表面激光熔覆Fe-B-Si铁基非晶复合材料[J].材料热处理学报,2012(10):116-123.
[4] LEYENS C;BEYER E.8-Innovations in Laser Cladding and Direct Laser Metal Deposition[J].Laser Surface Enginee-ring,2015:181-192.
[5] ABIOYE T E;MCCARTNEY D G;CLARE A T .Laser Clad-ding of Inconel 625 Wire for Corrosion Protection[J].Jour-nal of Materials Processing Technology,2015,217:232-240.
[6] 蔡川雄,刘洪喜,张晓伟,王传琦,蒋业华.送粉角度对激光熔覆铁基复合涂层形状特征的影响[J].强激光与粒子束,2013(06):1359-1364.
[7] Dengzhi Wang;Qianwu Hu;Xiaoyan Zeng.Microstructures and performances of Cr_(13)Ni_5Si_2 based composite coatings deposited by laser cladding and laser-induction hybrid cladding[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:502-508.
[8] 汪新衡,蒋冬青,张蓉,刘安民,朱航生.激光熔覆纳米SiC增强Ni基合金涂层的组织与高温抗氧化性能[J].表面技术,2014(01):30-34.
[9] 刘发兰,赵树森,高文焱,周春阳,王奕博,林学春.基材属性对Ni60A-WC激光熔覆涂层性能的影响[J].中国有色金属学报,2014(05):1319-1326.
[10] 张维平,郎志华,马海波.激光熔覆SiC/Co复合涂层的组织与性能研究[J].表面技术,2011(01):8-10,33.
[11] 丁阳喜,邬哲.35CrMo钢表面激光熔覆Ni/WC-Y2O3熔覆层性能研究[J].表面技术,2011(05):32-34,96.
[12] Alimardani, M.;Fallah, V.;Khajepour, A.;Toyserkani, E. .The effect of localized dynamic surface preheating in laser cladding of Stellite 1[J].Surface & Coatings Technology,2010(23):3911-3919.
[13] SUN G F;WANG K;ZHOU R et al.Effect of Annealing on Microstructure and Mechanical Properties of Laser Deposi-ted Co-285+WC Coatings[J].Optics and Lasers Technology,2015,66:98-105.
[14] ZAFAR S;SHARMA A K .Development and Characterisa-tions of WC-12Co Microwave Clad[J].Materials Characte-rization,2014,96:241-248.
[15] B.A.OBADELE,P.A.OLUBAMBI,O.T.JOHNSON.添加TiC对激光粒子沉积WC-Co-Cr 和WC-Ni涂层性能的影响[J].中国有色金属学报(英文版),2013(12):3634-3642.
[16] MONTGOMERY D C.Design and Analysis of Experiments[M].New York:John Wiley and Sons,Inc,2008
[17] KURZ W;FISHER D J.Fundamentals of Solidification[M].Switzerland:Trans Tech Publications,1984
[18] BOETTINGER W J;BANERJEE D K.7-Solidification-Phy-sical Metallurgy[M].Fifth Edition.Oxford:Elsevier,2014
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%