欢迎登录材料期刊网

材料期刊网

高级检索

目的:合成一种新型水溶性亚金配合物,并分析其应用于无氰镀金的可行性。方法以氯金酸为金液、半胱氨酸为配体,在弱碱性条件下合成半胱氨酸亚金钠,通过元素分析仪、红外光谱仪、紫外可见光谱仪、热重分析仪、电导率仪研究其理化性质。以温度、pH值和金质量浓度为变量,通过单因素试验分析它们对镀金的影响,通过正交试验获得适宜的镀金工艺条件。结果该产物的分子式为NaAu(Cys)2。该配合物的结构中,半胱氨酸里巯基和亚金进行配位并形成了很强的配位键,该配合物的特征吸收波长范围在205~210 nm。差热曲线和电导率值测定结果显示,该配合物在170℃以前的热稳定性较好,是典型的离子化合物。最佳的镀金工艺参数为:pH=2,金质量浓度2 g/L,温度45℃。在该条件下,镀层的结合力好,镀速可控,镀金效果良好。结论合成了新型水溶性亚金配合物,其理化性质稳定,有望用于无氰镀金工业领域。

ABSTRACT:Objective To synthesize a novel aurous compound and to analyze the feasibility of its application in cyanide-free gold plating. Methods Chloroauric acid was used as the gold liquid and cysteine as the ligand. Aurous compound ( NaAu( Cys) 2 ) was synthesized under the alkalescent environment, and related physical and chemical properties were studied by elemental analy-zer, infrared spectroscopy, UV-Vis spectrometer, thermogravimetric analyzer and conductivity meter. Results The results indicated that the molecular formula of the product was NaAu( Cys) 2 . IR spectra revealed a strong coordinating bond formed between Au( I) and the aurous in cysteine. UV-Vis revealed its characteristic adsorption was in the range of 205~210 nm. The DTA curve ex-plained the product was thermally stable before the temperature reached 170 ℃. Conductivity data showed the complex was a typi-cal ionic compound. By means of single factor and orthogonal tests the optimized electroless nickel/immersion gold indexes were obtained:operating temperature=45 ℃, pH=2, aurous concentration=2 g/L, respectively. Quality inspection under these condi-tions showed the deposited gold particles were in excellent bonding with controllable plating rate and good gold-plating effect. Con-clusion A novel aurous compound was synthesized with stable physical and chemical properties,which is expected to be used in the cyanide-free gold plating industry.

参考文献

[1] 卢银东,凌宗欣,赵晶晶.无氰化学镀金工艺的研究[J].电镀与环保,2012(04):27-28.
[2] AN M Z;YANG P X;NISHIKATA A et al.Electrodeposi-tion of Pure Cobalt in a Ionic Liquids at Ambient Tempera-ture[J].Chinese Journal of Chemistry,2008,26(7):1219-1221.
[3] 冯慧峤,安茂忠,杨培霞,张锦秋.无氰镀金工艺的研究[J].电镀与环保,2011(01):8-11.
[4] NAPPIER;THOMAS E .Gold Carboxylates and Process for Preparing the Same[P].United States,5210245,1993-05-11.
[5] KRULIK;GERALD A;MANDICH et al.Electroless Gold Pla-ting Composition[P].United States,5232492,1993-08-03.
[6] 李宁.化学镀金使用技术[M].北京:化学化工出版社,2003
[7] 刘鹏,杨伏良.氧化锆陶瓷中温化学镀镍三元络合剂的研究[J].表面技术,2014(05):66-70.
[8] 刘海萍,李宁,毕四富,孔令涛,李康.无氰化学镀金技术的发展及展望[J].电镀与环保,2007(03):4-7.
[9] HANG S Y;LI D L;SHENG G J.A Novel Cyanide-free Gold Complex:[Au(tu)2]SCN @ H2 O[J].Applied Mechanics and Materials,2013(448-453):94-97.
[10] JIN Wen-tao;LI De-liang;LI Ke-lin."Au-Cysteine" Com-plex and Its Application in Electro-plating[J].Advanced Materials Research,2012(518-523):3105-3108.
[11] 李德良;张云亮;李乐 等.一种阴离子型金络合物及其应用[P].中国,201210222594.1,2012-10-17.
[12] 陈月华,刘永永,江德凤,袁礼华.化学镀镍施镀过程稳定性分析[J].表面技术,2013(02):74-76.
[13] 李德良 .逆歧化反应法合成一价金络合物[P].中国, 201210040650. X,2013-09-11.
[14] LORENA G;RONCONI L;ALDINUCCI D et al.Synthesis,Characterization,and Comparative in Vitro Cytotoxicity Studies of Platinum(II),Paladium(II)and Gold(III)Methylsarcosinedithiocarbamate Complexes[J].The Journal of Medicinal Chemistry,2005,48(5):1588-1595.
[15] 刘玺,李德良,聂午阳.巯基乙酸亚金的合成及其理化性质[J].表面技术,2013(06):52-54.
[16] Ronconi L;Giovagnini L;Marzano C;Bettio F;Graziani R;Pilloni G;Fregona D .Gold dithiocarbamate derivatives as potential antineoplastic agents: Design, spectroscopic properties, and in vitro antitumor activity[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2005(6):1867-1881.
[17] Luca Ronconi;Christine Marzano;Piero Zanello;Maddalena Corsini;Giorgia Miolo;Carlo Macca;Andrea Trevisan .Gold(III) Dithiocarbamate Derivatives for the Treatment of Cancer: Solution Chemistry,DNA Binding,and Hemolytic Properties[J].Journal of Medicinal Chemistry,2006(5):1648-1657.
[18] 周慧云,李继红,刘斌,曹祖军,刘光明.化学镀镍层缓蚀工艺研究[J].表面技术,2014(05):81-86.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%