欢迎登录材料期刊网

材料期刊网

高级检索

介绍了石油管道内溶解氧、二氧化碳、硫化氢、以及二氧化碳和硫化氢协同腐蚀的机理. 综述了油气管道内防腐技术,现阶段主要的处理方式是选择耐蚀金属材料或非金属材料、添加缓蚀剂、涂层防腐和衬里防腐. 分析了各种内防腐技术的优缺点,认为管道内防腐在未来的发展方向是将基材选择、添加缓蚀剂、内涂镀层和内衬里技术进行综合,以减缓管道内的腐蚀. 低碳钢表面镀镍层自纳米合金化技术,即是集中内防腐技术的综合运用,得到了表面无缝冶金结合的高耐蚀性能管材,是未来发展趋势的代表.

The co-corrosion mechanism of oil and gases such as dissolved oxygen, carbon dioxide, hydrogen sulfide as well as carbon dioxide and hydrogen sulfide in the pipeline was described. The anti-corrosion technology of oil and gas in pipeline was re-viewed, including selection of corrosion resistant metallic materials or non-metallic materials, addition of corrosion inhibitor, coat-ing technology and lining technology. The paper analyzed advantages and disadvantages of various anti-corrosion technology and proposed that the future development trend of pipeline corrosion would be combination of substrate selection with addition of corro-sion inhibitors and internal lining technology for coating and lining to slow down the corrosion inside the pipe. Low carbon steel nickel-plated layer by nano alloying technology, which is the integrated utilization of concentrated anti-corrosion technology to ob-tain high metallurgical bonding surface seamless pipe with high corrosion resistance, is representative of future trends.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%