欢迎登录材料期刊网

材料期刊网

高级检索

目的 探究过渡层沉积时间和结构对类石墨镀层结合强度的影响规律. 方法 采用微弧离子镀技术,改变梯度层沉积时间,制备不同的类石墨镀层. 利用扫描电子显微镜( SEM)分析镀层的微观形貌,利用截面能谱扫描分析镀层中梯度层结构变化. 采用压痕法和划痕法对镀层与基体的结合强度进行评价. 采用维氏硬度计测试镀层的显微硬度,并利用针盘式摩擦磨损试验机测定镀层的摩擦系数. 结果随着梯度层沉积时间的延长,镀层与基体的结合强度呈先上升、后下降的变化趋势,在过渡层沉积时间为20 min时,结合强度最高,约为46 N. 此外,随着过渡层沉积时间的延长,镀层摩擦系数逐渐下降,但显微硬度下降,承载能力减弱,摩擦磨损寿命下降. 结论 合理调控过渡层沉积时间有助于类石墨镀层结合强度的提升,镀层的摩擦磨损寿命随着过渡层时间的延长而呈现先上升、后下降的趋势,高结合强度使得膜基界面的结合寿命延长.

Objective To explore the influencing law of transaction layer deposition time and structure on the bonding strength of the GLC films. Methods Different GLC ( Graphite-Like Carbon) films were synthesized by the micro-arc ion plating technology with varied gradient layer deposition time. The microstructure of the coating was characterized by scanning electron microscopy ( SEM) . The scanning of cross-sectional energy spectrum was used to analyze the variation of gradient layer structure. The bonding strength between the film and the substrate was determined by the scratch and indentation methods. The micro-hardness of the film was tested using Vickers hardness tester, and the friction coefficient of the films was measured by pin-on-disc friction and wear tes-ter. Results When the deposition time of transition layer was 20 min, the bond strength reached 46 N. With the increasing transi-tion layer deposition time, the bond strength of the films first increased and then decreased. The content of chromium increased with the increasing transition layer deposition time, while the hardness of GLC films decreased with the slowing down of gradient layer structure. The friction coefficient and the lifetime of the films decreased with the increasing transaction layer deposition time. Conclusion Reasonable transition deposition period was helpful to improve the bonding strength of the GLC coating. The friction and wear life of the coating first increased and then decreased with the increasing transaction layer deposition time. High bonding strength was helpful to increase the adhesive life between the film and substrate.

参考文献

[1] 杜军;何家文.类石墨碳膜的制备及其与类金刚石碳膜的区分[J].中国表面工程,2005(4):6-8,12.
[2] 严富学;白力静;殷鹏.偏压对GLC镀层的结构及应力的影响研究[J].表面技术,2010(2):28-30.
[3] V. Kulikovsky;K. Metlov;A. Kurdyumov;P. Bohac;L. Jastrabi.Study of the structure of hard graphite-like amorphous carbon films by electron diffraction[J].Diamond and Related Materials,20028(8):1467-1471.
[4] S. Yang;D. G. Teer.Investigation of sputtered carbon and carbon/chromium multi-layered coatings[J].Surface & Coatings Technology,20001/3(1/3):412-416.
[5] U. Wiklund;M. Larsson.Low friction PVD titanium-carbon coatings[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20002(2):234-238.
[6] 黄鹤;何家文.刀具的抗磨和减摩镀层[J].机械工程学报,2002(4):155-158.
[7] 崔雨潇;赵天奇;孙方宏;沈彬.基于中间过渡层技术提高金刚石薄膜与硬质合金基体间附着力的研究进展[J].中国科技论文,2015(6):673-678.
[8] 江功武;于翔;王成彪.类金刚石碳膜的研究进展[J].金属热处理,2003(11):1-6.
[9] Teer DG..New solid lubricant coatings[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20012(2):1068-1074.
[10] 汪渊;宋忠孝;徐可为.体心立方金属W薄膜晶体取向的膜厚尺寸效应及其表面映射[J].物理学报,2007(12):7248-7254.
[11] 胡奈赛;徐可为;何家文.涂、镀层的结合强度的评定[J].中国表面工程,1998(01):31.
[12] Chuan Ting Wang;Ana Escudeiro;Tomas Polcar;Albano Cavaleiro;Robert J. K. Wood;Nong Gao;Terence G. Langdon.Indentation and scratch testing of DLC-Zr coatings on ultrafine-grained titanium processed by high-pressure torsion[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20131/2(1/2):304-310.
[13] 易茂中;陈广超;胡奈赛.用涂层压入仪测定薄膜与基体结合强度的探讨[J].真空科学与技术学报,1999(2):89.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%