目的 改善铝基材料在干摩擦条件下的摩擦磨损性能. 方法 采用两步法在铝表面构筑稳定的超疏水薄膜. 首先采用盐酸溶液刻蚀金属铝,在其表面构筑微纳织构;然后涂覆硬脂酸,降低表面能.利用SEM、XRD、FTIR、接触角测量仪及摩擦磨损试验机表征铝表面超疏水薄膜的表面形貌、化学组分、润湿性和减摩耐磨特性. 结果 SEM及XRD分析表明,刻蚀后的铝表面呈现多尺度微纳结构. FTIR分析表明,脂肪酸以双配位结构与铝表面发生作用. 接触角测试表明,所制备的薄膜呈现出良好的超疏水性能,静态接触角达150 ° ,滑动角小于10 °. 摩擦学实验结果表明,制备的超疏水薄膜可明显改善铝基底的摩擦学性能,在干摩擦条件下与钢球对磨时,超疏水薄膜的摩擦系数保持在0. 16左右,寿命超过10 000 s,而相同条件下未处理的金属铝摩擦系数超过0. 6. 结论 采用盐酸溶液刻蚀金属铝,然后涂覆硬脂酸,可在铝表面构筑复合薄膜. 薄膜不仅表现出明显的超疏水特性,同时具有良好的减摩耐磨性能. 该方法技术简单,价格低廉,易于批量化生产,为改善微纳条件下铝及其合金的摩擦学性能提供了一个新的思路.
Objective To improve the friction and wear performance of aluminum in dry sliding contact. Methods The two-step method was used in this paper to fabricate the superhydrophobic film on aluminum. The aluminum substrate was firstly etched by hydrochloric acid to create the micro- and nano-texture, then coated by layer of stearic acid to decrease surface energy. SEM, XRD, FTIR spectroscopy, contact-angle measuring instrument and friction-abrasion testing machine were used to analyze the mor-phological features, chemical composition, hydrophobicity and tribological performance of superhydrophobic film on aluminum, re-spectively. Results SEM and XRD analyses showed that the micro- and nano-structure was created on aluminum after chemicaletch. FIIR analysis showed stearic acid was chemically absorbed on aluminum surface in a bidentate mode. The film on aluminum showed superhydrophobicity with static water contact angle of 150° and sliding angle of 10°. It was effective to improve tribological performance of aluminum. The friction coefficient kept as low as 0. 16 for 10 000 s sliding time when sliding with steel ball in the unlubricated condition. Conclusion The superhydrophobic film formed on aluminum by using chemical etch by hydrochloric acid and then the surface modified by stearic acid could improve the friction and wear performance of aluminum. The method is simple and can be easily operated at a large scale. It may provide a new method to improve the friction and wear performance of aluminum.
参考文献
[1] | Barthlott W;Neinhuis C.Purity of the sacred lotus, or escape from contamination in biological surfaces.[J].Planta,19971(1):1-8. |
[2] | Xinjian Feng;Lei Jiang.Design and Creation of Superwetting/Antlwetting Surfaces[J].Advanced Materials,200623(23):3063-3078. |
[3] | 钱鸿昌;李海扬;张达威.超疏水表面技术在腐蚀防护领域中的研究进展[J].表面技术,2015(3):15-24,30. |
[4] | 仇伟;刘见祥;曾舒;张波;冯利军.超疏水涂料的制备及其防覆冰性能[J].表面技术,2012(6):108-110. |
[5] | 陈小娇;武卫东;汪德龙.超疏水表面抑制结霜研究进展[J].表面技术,2015(2):87-92. |
[6] | Voronov RS;Papavassiliou DV;Lee LL.Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle[J].Industrial & Engineering Chemistry Research,20088(8):2455-2477. |
[7] | Kesong Liu;Lei Jiang.Metallic surfaces with special wettability[J].Nanoscale,20113(3):825-838. |
[8] | Liu, X.;Liang, Y.;Zhou, F.;Liu, W..Extreme wettability and tunable adhesion: Biomimicking beyond nature?[J].Soft matter,20127(7):2070-2086. |
[9] | 胡亚微;贺惠蓉;马养民.电化学沉积Ni-P基复合膜及其润湿性研究[J].表面技术,2012(3):57-59. |
[10] | Zhu, X.;Zhang, Z.;Xu, X.;Men, X.;Yang, J.;Zhou, X.;Xue, Q..Facile fabrication of a superamphiphobic surface on the copper substrate[J].Journal of Colloid and Interface Science,2012:443-449. |
[11] | Yong-Lai Zhang;Hong Xia;Eunkyoung Kim;Hong-Bo Sun.Recent developments in superhydrophobic surfaces with unique structural and functional properties[J].Soft matter,201244(44):11217-11231. |
[12] | 刘维民;夏延秋;薛群基.磷氮型极压抗磨添加剂对钢-铝摩擦副摩擦磨损性能的影响[J].摩擦学学报,2000(5):331-335. |
[13] | 唐艳茹;潘利华;常宇;谢文兵.微弧氧化提高铝合金耐磨性能的研究[J].表面技术,2015(2):48-54. |
[14] | Sarmistha Das;S. K. Biswas.Boundary lubricated tribology of an aluminium-silicon alloy sliding against steel[J].Tribology letters,20043(3):623-628. |
[15] | Hoque E;DeRose JA;Hoffmann P;Bhushan B;Mathieu HJ.Alkylperfluorosilane self-assembled monolayers on aluminum: A comparison with alkylphosphonate self-assembled monolayers[J].The journal of physical chemistry, C. Nanomaterials and interfaces,200710(10):3956-3962. |
[16] | Om P. Khatri;Colin D. Bain;Sanjay K. Biswas.Effects of Chain Length and Heat Treatment on the Nanotribology of Alkylsilane Monolayers Self-Assembled on a Rough Aluminum Surface[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,200549(49):23405-23414. |
[17] | Mehdi Shafiei;Ahmet T. Alpas.Fabrication of biotextured nanocrystalline nickel films for the reduction and control of friction[J].Materials science & engineering, C. Biomimetic and supramolecular systems,20088(8):1340-1346. |
[18] | Beake BD.;Leggett GJ..Variation of frictional forces in air with the compositions of heterogeneous organic surfaces[J].Langmuir: The ACS Journal of Surfaces and Colloids,20002(2):735-739. |
[19] | Eui-Sung Yoon;R. Arvind Singh;Hyun-Jin Oh;Hosung Kong.The effect of contact area on nano/micro-scale friction[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20052(2):1424-1431. |
[20] | R. A. Singh;E.-S. Yoon;H. J. Kim.Enhanced tribological properties of lotus leaf-like surfaces fabricated by capillary force lithography[J].Surface Engineering,20073(3):161-164. |
[21] | Sahoo, R.R.;Biswas, S.K..Frictional response of fatty acids on steel[J].Journal of Colloid and Interface Science,20092(2):707-718. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%