欢迎登录材料期刊网

材料期刊网

高级检索

目的 提高螺纹钢的耐蚀性能. 方法 采用模拟穿水淬火冷却工艺,在加入ZnSO4 缓蚀剂的介质中对Q235螺纹钢进行淬火热处理. 通过XRD测试、大气腐蚀和电化学测试(包括极化曲线和交流阻抗)等手段对不同淬火介质中Q235 螺纹钢进行表征和测试. 结果 淬火处理后试样表面生成Fe2 O3、Fe3 O4 和Zn( OH) 2 的保护膜,当ZnSO4 缓蚀剂添加量达到120 mg/L时,Q235螺纹钢的腐蚀速度由自来水淬火状态的0. 4583 g/(d·m2)降低到0. 2083 g/(d·m2),腐蚀速度降低了54. 5%;Q235螺纹钢的腐蚀电位由-0. 3752 V提高到-0. 2997 V,增加了20. 1%;腐蚀电流由5. 2482 ×10-5 A降低到1. 6082 ×10-5 A,降低了69. 3%;容抗谱Rr由25. 58 Ω增加到32. 52 Ω,增加了27. 1%. Q235螺纹钢在模拟雨水中的极化形式为电化学极化. 结论 ZnSO4 缓释剂可有效提高Q235螺纹钢的耐蚀性能.

Objective To improve the properties of corrosion resistance of steel Q235. Methods The quenching heat treatments were performed with simulated water quench process on steel Q235 after adding ZnSO4 inhibitor medium. The steel Q235 was char-acterized and tested by XRD testing, atmospheric corrosion, and electrochemical tests ( including polarization curves and AC im-pedance) under different solutions. Results Fe2O3, Fe3O4 and Zn(OH)2 protective films were generated on the sample surface. When the amount of corrosion inhibitor ZnSO4 reached 120 mg/L, the corrosion rate was reduced to 0. 2083 g/(d·m2) from 0. 4583 g/(d·m2) in the water quenching. The rebar corrosion rate was reduced by 54. 5%. The corrosion potential increased from -0. 3752 V to -0. 2997 V of Q235, the corrosion potential increased by 20. 1%, the corrosion current reduced from 5. 2482× 10-5 A to 1. 6082×10-5 A, the corrosion current was reduced by 69. 3%, the capacitance spectrum value Rr increased from 25. 58Ωup to 32. 52 Ωwhich was increased by 27. 1%. The polarization of Q235 in simulated rain was the form of electrochemical polari-zation. Conclusion ZnSO4 inhibitor can effectively alleviate Q235 steel corrosion resistance.

参考文献

[1] A. I. Zaky;A. El-Morsy;T. El-Bitar.Effect of different cooling rates on thermomechanically processed high-strength rebar steel[J].Journal of Materials Processing Technology,20093(3):1565-1569.
[2] D. de la Fuente;I. Diaz;J. Simancas;B. Chico;M. Morcillo.Long-term atmospheric corrosion of mild steel[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,20112(2):604-617.
[3] 刘金源;郑晓明;梁建珠.HRB335螺纹钢筋穿水冷却金相组织分析[J].物理测试,2008(2):23-25.
[4] 宁保群;严泽生;赵捷;刘永长.淬火温度对20MnSi螺纹钢相变过程的影响[J].热加工工艺,2010(20):161-163.
[5] 魏洁;董俊华;柯伟.新型化学剂快速冷却热轧螺纹钢的防锈性能研究[J].腐蚀科学与防护技术,2009(5):468-471.
[6] 韩斌 .钢筋表面耐蚀性转化与评价方法研究[D].天津大学,2007.
[7] 李武林 .新型螺纹钢低温缓蚀淬火剂及耐腐蚀机理探讨[D].合肥工业大学,2014.
[8] 张娟娟;魏连启;仉小猛;周旬;王春苗;李晶;叶树峰.高温防锈剂对螺纹钢耐腐蚀性能的影响研究[J].计算机与应用化学,2011(11):1362-1366.
[9] 李领;左白艳;高恩双;宗俊.新型磷酸盐在钢板表面防锈性能研究[J].盐业与化工,2012(3):10-13.
[10] 衣守志;马洪运;张琴.螺纹钢水基防锈剂的制备及性能[J].材料保护,2012(1):30-32.
[11] 魏凤玉;胡芳;黄登銮.新型试剂快速冷却螺纹钢的耐蚀性能[J].材料热处理学报,2011(12):151-154.
[12] 陈泽民;路品;苏艳丽;何敏.钢铁水基防锈剂的研制及其性能[J].材料保护,2011(6):58-59.
[13] 朱弘琦;朱曾涛.化学剂冷却条件下20SiMn材料的耐蚀性能研究[J].铸造技术,2015(1):83-85,88.
[14] 朱青;朱明;余勇;张路路.AZ91 D镁合金Mo-Mn无铬转化膜的制备与耐蚀性[J].表面技术,2015(8):9-14.
[15] 杨培燕;顾宝珊;王岩;鲁强.热浸镀锌层在模拟混凝土环境下耐蚀性能研究[J].全面腐蚀控制,2015(4):68-72.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%