目的:聚二甲基硅氧烷( PDMS)作为微流控芯片研制中常用的高分子材料,其本身的疏水特性是影响微流控芯片整体键合效果的主要障碍。为了在短时间内成功实现PDMS与基底材料的有效键合与封装,设计一种可在普通实验室开展的低成本且高效的PDMS材料改性方法。方法基于紫外臭氧光照改性法对PDMS材料表面进行改性研究,通过正交试验深入研究紫外光照射时间、距离及通氧时间对PDMS表面改性效果的影响,并在50℃水浴环境下通过测量不同时间PDMS基片与盖片( PDMS或玻璃)的键合强度,从而确定最优工艺参数组合。结果相比于传统紫外光照射表面改性法的键合时间(大于50 h),本工艺可在6 h内成功实现PDMS的有效封装,并确定了P—P键合和P—G键合的最优参数组合,两者平均键合强度均大于200 kPa。结论整个工艺操作简单、成本低,可作为普通实验室开展微流控实验研究的有益补充。
ABSTRACT:Objective Polydimethylsiloxane ( PDMS) was developed as commonly used polymer materials in microfluidic chip, and its own hydrophobic properties was a major obstacle that affects the overall chip bonding effects. In order to achieve effective bonding and packaging between PDMS and the substrate materials within a short time, a low-cost and highly efficient PDMS materi-al modification method that could be performed in ordinary laboratories was designed. Methods Ultraviolet ozone( UVO) irradiation method was used to study PDMS surface modification, and the orthogonal experiment method was used to study the influences of UV irradiation time, distance and oxygenation time on the PDMS surface modification effects. The bond strength between PDMS sub-strate and the cover sheet ( PDMS or glass) was measured in 50 ℃ water bath at different times, and finally the optimal combina-tion of the parameters was determined. Results Compared with the traditional surface modification method of ultraviolet irradiation with a bonding time of more than 50 h, the proposed process could successfully implemented PDMS packaging within six hours. And the P—P and P—G′s optimal parameters combination was finally determined, with both average bonding strengths of greater than 200 kPa. Conclusion The whole process was simple and low-cost, and could be used as a useful supplement to microfluidic experimental research in ordinary laboratories.
参考文献
[1] | Jiseok Lim;Florine Maes;Valerie Taly.The microfluidic puzzle: chip-oriented rapid prototyping[J].Lab on a chip,201410(10):1669-1672. |
[2] | 陈萌;郭浩;杨江涛;赵苗苗;张斌珍;刘俊;薛晨阳;张文栋;唐军.面向微流控封装应用的PDMS表面无裂纹改性[J].仪表技术与传感器,2015(1):92-94. |
[3] | 温金开 .微纳流控芯片制作方法及其富集应用[D].大连理工大学,2009. |
[4] | 张雅雅;崔建国.基于PDMS的经济型微流体加工技术研究[J].机床与液压,2014(24):86-92. |
[5] | 孟斐;陈恒武;方群;朱海霖;方肇伦.聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究[J].高等学校化学学报,2002(7):1264-1268. |
[6] | Gymama Slaughter;Brian Stevens.A cost-effective two-step method for enhancing the hydrophilicity of PDMS surfaces[J].BioChip journal,20141(1):28-34. |
[7] | Yuzhe Ding;Lingfei Hong;Baoqing Nie.Capillary-driven automatic packaging[J].Lab on a chip,20118(8):1464-1469. |
[8] | 丁继亮;常洪龙;陈方璐;洪水金;苑伟政.一种用电晕放电仪实现PDMS改性与键合方法[J].功能材料与器件学报,2012(3):187-191. |
[9] | 姚树寅;吴仲岿;杨军;李少英;晏海英.PDMS真空紫外光表面亲水改性研究[J].湖北大学学报(自然科学版),2010(2):188-191. |
[10] | 黄道君 .PDMS芯片粘接性能及微萃取系统的实验研究[D].天津大学,2007. |
[11] | 夏飞 .PDMS微流控芯片的制备工艺研究[D].南京理工大学,2010. |
[12] | 王国征.短波长紫外线表面清洗及改性技术[J].现代涂料与涂装,2011(09):59-63. |
[13] | 张雅雅;崔建国.基于数字光刻投影系统的快速微加工技术[J].应用光学,2015(3):448-453. |
[14] | Mosadegh, B.;Kuo, C.-H.;Tung, Y.-C.;Torisawa, Y.-S.;Bersano-Begey, T.;Tavana, H.;Takayama, S..Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices[J].Nature physics,20106(6):433-437. |
[15] | 杨怡;李泽甫;方瑜;罗炫;张林.PDMS微/毫流控芯片的简易快速制备及其疏水性研究[J].纳米技术与精密工程,2014(1):63-67. |
[16] | 叶雄英;施缪佳;朱荣;杜敏;冯金扬.PDMS氧等离子体表面改性工艺参数优化[J].清华大学学报(自然科学版),2010(12):1974-1977,1982. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%