欢迎登录材料期刊网

材料期刊网

高级检索

目的 探索用低强度电流(毫安级)处理碳纤维单丝的实验方法 ,讨论电热载荷对碳纤维表面物化性质的影响,为碳纤维复合材料电热损伤机制研究提供理论基础.方法 采用直流恒流精密电源对T300碳纤维单丝以不同强度的电流通电,利用扫描电子显微镜(SEM)和原子力显微镜(AFM)测试手段分析碳纤维表面形貌和粗糙度的变化,利用X射线光电子能谱(XPS)对电热处理后的碳纤维表面的化学性质进行分析,并得出纤维表面活性的变化.结果 经过不同电流强度处理的碳纤维表面发生了明显的变化,2 mA和4 mA处理的纤维表面出现了很多裂纹,且粗糙度随着电流的升高而降低,6 mA处理的纤维表面沟壑被填充且粗糙度稍有上升;随着电流的升高,纤维表面的C含量随之升高,O含量则呈现相反趋势,C—C稍有降低,C—O键降低明显.结论 电热载荷对纤维表面的浆料有烧蚀作用,未反应的浆料残留在碳纤维表面,并且使凹槽变浅,粗糙度也有所降低;电热产生的高温反应掉了很多上浆剂成分,使更多的纤维本体裸露出来,更多的羟基转化成了羰基和羧基,而纤维表面活性则稍有增强.

Objective To explore the experimental method that uses low intensity current ( mA) treatment of carbon fiber mono-filament, and to discuss the effect of electric-thermal on the physicochemical properties of the surface of carbon fibers, in order to provide theoretical basis for the electric heat damage mechanism of carbon fiber composite. Methods Constant DC precision power was used to supply electric current on T300 carbon fiber monofilaments. Scanning electron microscope ( SEM) and atomic force mi-croscope ( AFM) were used to analyze the change in the surface morphology and roughness of carbon fibers. X photoelectron spec-troscopy was used to characterize the surface's chemical property of carbon fibers before and after electric-thermal treatment. And the changes of the surface activity of the fibers were obtained. Results The surface of carbon fiber treated by different current inten-sity changed significantly. Many cracks appeared on the surface of 2 mA and 4 mA treated fibers, and the roughness was reduced with the increase of current. The gullies on the surface after 6 mA treatment were filled and the roughness was slightly improved. With the increase of current, the C content on the surface of carbon fibers also increased, while the content of O showed the oppo-site trend, the content of C—C decreased slightly, while C—O decreased significantly. Conclusion The electric-thermal load showed ablation effect on the sizing agent on the surface of carbon fibers. Unreacted sizing agent remained on the surface of carbon fibers, it also shallowed grooves, reduced roughness. As a result of the high temperature generated by electric heat, the sizing a-gent忆s components dropped a lot, with more of fiber's real body exposed, more hydroxy group converted into carbonyl and carboxyl, while the surface activity of the fiber was slightly enhanced.

参考文献

[1] 贺福.碳纤维的电热性能及其应用[J].化工新型材料,2005(06):7-8,38.
[2] 殷祥刚;黄机质;王会;冯小洁.碳纤维经不同温度处理后的力学性能分析[J].产业用纺织品,2015(4):17-20.
[3] An integrated method for predicting damage and residual tensile strength of composite laminates under low velocity impact[J].Computers & structures,20097/8(7/8):456-466.
[4] Hirohide Kawakami;Paolo Feraboli.Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites[J].Composites, Part A. Applied science and manufacturing,20119(9):1247-1262.
[5] 汪晓峰;倪如青;刘强.高性能聚丙烯腈基原丝的制备[J].合成纤维,2000(4):23.
[6] 王晓坡 .T-700级碳纤维的表面特征评价及其复合材料界面性能研究[D].哈尔滨工业大学,2010.
[7] 郭晋丽;李明伟;程旻;殷士杰;曹亚超.pH值对ADP晶体(100)面生长的影响[J].功能材料,2010(11):1883-1887.
[8] 武海生;孙志杰;贾晶晶;李敏;顾轶卓;张佐光.高性能有机纤维单丝复合体系界面粘结性能实验研究[J].复合材料学报,2010(4):59-63.
[9] 宁亮 .中间相沥青基碳纤维的制备及其表面处理的研究[D].北京化工大学,2009.
[10] 彭佳;胡陈果.电化学氧化对碳纤维表面电化学性质的影响[J].表面技术,2008(4):12-14.
[11] Febo Severini;Leonardo Formaro;Mario Pegoraro;Luca Posca.Chemical modification of carbon fiber surfaces[J].Carbon: An International Journal Sponsored by the American Carbon Society,20025(5):735-741.
[12] Dilsiz Nursel;Wightman J.P..Surface analysis of unsized and sized carbon fibers[J].Carbon: An International Journal Sponsored by the American Carbon Society,19997(7):1105-1114.
[13] 张焕侠;李炜;罗永康.碳纤维上浆工艺及其对碳纤维性能的影响研究[J].玻璃钢/复合材料,2011(3):48-51.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%