欢迎登录材料期刊网

材料期刊网

高级检索

生物医用钛合金植入体与骨细胞结合能力差一直是医学界面临的难题之一,表面形貌作为影响植入体生物相容性的重要因素,受到国内外学者的广泛研究。针对植入体表面微纳结构的国内外研究现状进行了叙述,重点介绍了植入体表面的微米结构、纳米结构、微纳米多级结构的制备及其对生物相容性的影响。综述表明:植入体表面合适的微米结构或纳米结构对细胞的行为表现出积极作用,能够增加植入体的生物活性和生物相容性;兼具微米与纳米多级结构表面的种植体表现出微米结构和纳米结构的协同效应,相对于单一的微米或纳米结构,能更好地促进骨整合。最后,针对医用钛合金植入体表面结构研究中存在的一些问题,指出了植入体表面结构的研究趋势。

ABSTRACT:The poor binding capacity between biomedical titanium alloy implant and osteoblasts is one of the difficult prob-lems in medical field. Surface topography, as an important factor, affects the biocompatibility of the implant, which attracts the widespread attention of researchers. The state-of-the-art of micro-nanostructure on implant was presented in this paper, and the specific conditions for preparation of micron structure, nanostructure and hierarchical micro/nanostructure on implant were in-troduced, as well as the effect on biocompatibility. The summary showed that the implant surface with suitable micron or nano structure had positive effect on cell behavior, and could increase its biological activity and biocompatibility. Implant with mul- ti-level surface structure had synergistic effect of micron structure and nanostructure compared to a single micron structure or nanostructure surface, which significantly improved the osseointegration. Finally, aiming at some problems or shortcomings in the research of medical titanium alloy implant, the research trend of structure surface on implant was proposed.

参考文献

[1] S.C.H. Kwok;J. Wang;P.K. Chu.Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films[J].Diamond and Related Materials,20051(1):78-85.
[2] Hallab NJ;Bundy KJ;O'Connor K;Moses RL;Jacobs JJ.Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion.[J].Tissue engineering,20011(1):55-71.
[3] Zhao G;Schwartz Z;Wieland M;Rupp F;Geis-Gerstorfer J;Cochran DL;Boyan BD.High surface energy enhances cell response to titanium substrate microstructure.[J].Journal of biomedical materials research, Part A,20051(1):49-58.
[4] Y. Yoshida;K. Kuroda;R. Ichino;N. Hayashi;N. Ogihara;Y. Nonaka.Influence of surface properties on bioactivity and pull-out torque in cold thread rolled Ti rod-Development of bioactive metal-forming technology[J].CIRP Annals,20121(1):579-582.
[5] Papalexiou V;Novaes AB Jr;Grisi MF;Souza SS;Taba M Jr;Kajiwara JK.Influence of implant microstructure on the dynamics of bone healing around immediate implants placed into periodontally infected sites. A confocal laser scanning microscopic study.[J].Clinical oral implants research,20041(1):44-53.
[6] Klein,M.O.;Bijelic,A.;Ziebart,T.;Koch,F.;K?mmerer,P.W.;Wieland,M.;Konerding,M.A.;Al-Nawas,B..Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation[J].Clinical implant dentistry and related research,20132(2):166-175.
[7] Padial Molina M;Galindo Moreno P;Fernandez Barbero JE;O'Valle F;Jodar Reyes AB;Ortega Vinuesa JL;Ramon Torregrosa PJ.Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces.[J].Acta biomaterialia,20112(2):771-778.
[8] Rupp F;Scheideler L;Olshanska N;de Wild M;Wieland M;Geis Gerstorfer J.Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces.[J].Journal of biomedical materials research, Part A,20062(2):323-334.
[9] Shalabi MM;Gortemaker A;Hof MA;Jansen JA;Creugers NH.Implant surface roughness and bone healing: a systematic review.[J].Journal of Dental Research: Official Publication of the International Association for Dental Research,20066(6):496-500.
[10] Ellingsen JE;Johansson CB;Wennerberg A;Holmen A.Improted retention and bone-tolmplant contact with fluoride-modified titanium implants.[J].The International journal of oral & maxillofacial implants,20045(5):659-666.
[11] Ye, Xiaoxin;Tse, Zion T. H.;Tang, Guoyi;Song, Guolin.The effect of electropulsing induced gradient topographic oxide coating of Ti-Al-V alloy strips on the fibroblast adhesion and growth[J].Surface & Coatings Technology,2015:213-218.
[12] Jana Havlikova;Josef Strasky;Marta Vandrovcova;Petr Harcuba;Mansour Mhaede;Milos Janecek;Lucie Bacakova.Innovative surface modification of Ti-6Al-4V alloy with a positive effect on osteoblast proliferation and fatigue performance[J].Materials science & engineering, C. Materials for Biogical applications,2014:371-379.
[13] 鲁雄;冯波;翁杰;冷扬.生物材料表面微纳结构对成骨相关细胞的影响[J].中国材料进展,2013(10):611-622.
[14] Huang HH;Ho CT;Lee TH;Lee TL;Liao KK;Chen FL.Effect of surface roughness of ground titanium on initial cell adhesion.[J].Biomolecular engineering,20043/5(3/5):93-97.
[15] Kapanen A;Danilov A;Lehenkari P;Ryhanen J;Jamsa T;Tuukkanen J.Effect of metal alloy surface stresses on the viability of ROS-17/2.8 osteoblastic cells.[J].Biomaterials,200217(17):3733-3740.
[16] 梁迎春;宋代平;陈明君;白清顺.钛系生物医用材料表面粗糙度影响细胞黏附的新进展[J].机械工程学报,2008(7):6-15.
[17] 李德华;刘宝林;徐可为.改良喷砂表面处理对钛表面理化性能的影响[J].解放军医学杂志,2001(1):21-23.
[18] Chen J;Mwenifumbo S;Langhammer C;McGovern JP;Li M;Beye A;Soboyejo WO.Cell/surface interactions and adhesion on Ti-6Al-4V: effects of surface texture.[J].Journal of biomedical materials research, Part B. Applied biomaterials,20072(2):360-373.
[19] Pan, C.-J.;Qin, H.;Nie, Y.-D.;Ding, H.-Y..Control of osteoblast cells adhesion and spreading by microcontact printing of extracellular matrix protein patterns[J].Colloids and Surfaces, B. Biointerfaces,2013:18-26.
[20] Dan Li;Xiong Lu;Hong Lin;Fuzeng Ren;Yang Leng.Chitosan/bovine serum albumin co-micropatterns on functionalized titanium surfaces and their effects on osteoblasts[J].Journal of Materials Science. Materials in Medicine,20132(2):489-502.
[21] Lu X;Leng Y;Zhang X;Xu J;Qin L;Chan CW.Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo.[J].Biomaterials,200514(14):1793-1801.
[22] Xiong Lu;Yang Leng.Electrochemical micromachining of titanium surfaces for biomedical applications[J].Journal of Materials Processing Technology,20052(2):173-178.
[23] Sinan Filiz;Luke Xie;Lee E. Weiss;O. B. Ozdoganlar.Micromilling of microbarbs for medical implants[J].International Journal of Machine Tools & Manufacture: Design, research and application,20083/4(3/4):459-472.
[24] Iezzi G;Aprile G;Tripodi D;Scarano A;Piattelli A;Perrotti V.Implant surface topographies analyzed using fractal dimension.[J].Implant dentistry,20112(2):131-138.
[25] Coelho PG;Cardaropoli G;Suzuki M;Lemons JE.Early healing of nanothickness bioceramic coatings on dental implants. An experimental study in dogs.[J].Journal of biomedical materials research, Part B. Applied biomaterials,20092(2):387-393.
[26] Hansson Stig;Norton Michael.Relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model[J].Journal of Biomechanics,19998(8):829-836.
[27] Puleo DA;Nanci A.Understanding and controlling the bone-implant interface.[J].Biomaterials,199923/24(23/24):2311-2321.
[28] Schneider GB;Perinpanayagam H;Clegg M;Zaharias R;Seabold D;Keller J;Stanford C.Implant surface roughness affects osteoblast gene expression.[J].Journal of Dental Research: Official Publication of the International Association for Dental Research,20035(5):372-376.
[29] Variola F;Yi JH;Richert L;Wuest JD;Rosei F;Nanci A.Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation.[J].Biomaterials,200810(10):1285-1298.
[30] Wu JM;Huang B;Wang M;Osaka A.Titania nanoflowers with high photocatalytic activity[J].Journal of the American Ceramic Society,20068(8):2660-2663.
[31] Wu SL;Liu XM;Hu T;Chu PK;Ho JPY;Chan YL;Yeung KWK;Chu CL;Hung TF;Huo KF.A Biomimetic Hierarchical Scaffold: Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals[J].Nano letters,200811(11):3803-3808.
[32] Park J;Bauer S;von der Mark K;Schmuki P.Nanosize and vitality: TiO2 nanotube diameter directs cell fate[J].Nano letters,20076(6):1686-1691.
[33] Sjostrom T;Dalby MJ;Hart A.Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells.[J].Acta biomaterialia,20095(5):1433-1441.
[34] Masuda H;Fukuda K.ORDERED METAL NANOHOLE ARRAYS MADE BY A TWO-STEP REPLICATION OF HONEYCOMB STRUCTURES OF ANODIC ALUMINA[J].Science,19955216(5216):1466-1468.
[35] Hongyi Li;Man Liu;Hong Wang;Junshu Wu;Penglei Su;Dasheng Li;Jinshu Wang.Formation Process of TiO_2 Nanotube Arrays Prepared by Anodic Oxidation Method[J].Journal of nanoscience and nanotechnology,20136(6):4110-4116.
[36] Han Y;Chen D;Sun J.UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings.[J].Acta biomaterialia,20085(5):1518-1529.
[37] Wang YM;Jiang BL;Lei TQ;Guo LX.Microarc oxidation coatings formed on Ti6A14V in Na2SiO3 system solution: Microstructure, mechanical and tribological properties[J].Surface & Coatings Technology,20061/2(1/2):82-89.
[38] Advincula MC;Rahemtulla FG;Advincula RC;Ada ET;Lemons JE;Bellis SL.Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide.[J].Biomaterials,200610(10):2201-2212.
[39] G. He;J. Hu;S.C. Wei;J.H. Li;X.H. Liang;E. Luo.Surface Modification Of Titanium By Nano-tio_2/ha Bioceramic Coating[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,20082(2):442-445.
[40] Pareta,R.;Yang,L.;Kothari,A.;Sirinrath,S.;Xiao,X.;Sheldon,B.W.;Webster,T.J..Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion[J].Journal of biomedical materials research, Part A,20101(1):129-136.
[41] Tang L.;Gerberich WW.;Kruckeberg L.;Kania DR.;Tsai C..BIOCOMPATIBILITY OF CHEMICAL-VAPOUR-DEPOSITED DIAMOND[J].Biomaterials,19956(6):483-488.
[42] M.N. Asiah;M.H. Mamat;Z. Khusaimi;M.F. Achoi;S. Abdullah;M. Rusop.Thermal stability and phase transformation of TiO_2 nanowires at various temperatures[J].Microelectronic engineering,2013Aug.(Aug.):134-137.
[43] Chen F;Lam WM;Lin CJ;Qiu GX;Wu ZH;Luk KD;Lu WW.Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells.[J].Journal of biomedical materials research, Part B. Applied biomaterials,20071(1):183-191.
[44] Changjian Lin;Huijuan Han;Fang Zhang;Aimin Li.Electrophoretic deposition of HA/MWNTs composite coating for biomaterial applications[J].Journal of Materials Science. Materials in Medicine,20087(7):2569-2574.
[45] Liu XY;Zhao XB;Fu RKY;Ho JPY;Ding CX;Chu PK.Plasma-treated nanostructured TiO2 surface supporting biomimetic growth of apatite[J].Biomaterials,200531(31):6143-6150.
[46] 马宗敏;谢艳娜;石云波;唐军;张欢;王芳;赵敏;曲章;刘俊.TiO2纳米管的阳极氧化制备及改性应用研究综述[J].表面技术,2015(9):61-71,88.
[47] 马臣;王颖慧;曲立杰;张向宇.钛合金微弧氧化技术的研究现状及展望[J].中国陶瓷工业,2007(1):46-49.
[48] 谭思民;王帅星;赵晴;马刚;刘康生;高鹏.水热时间对钛合金微弧氧化膜合成羟基磷灰石的影响[J].表面技术,2014(3):20-24.
[49] 黄立业;徐可为.纳米针状羟基磷灰石涂层的制备及其性能的研究[J].硅酸盐学报,1999(3):351-356.
[50] 毛大立;曹海萍;常程康;顾云峰.羟基磷灰石涂层的骨结合行为[J].上海交通大学学报,2003(2):264-268.
[51] 王昌祥.离子束辅助沉积技术制备HA/Ti植入材料的设计[J].生物医学工程学杂志,1999(02):140.
[52] 王少鹏;李争显;杜继红.钛合金表面等离子喷涂涂层材料的研究进展[J].表面技术,2013(5):93-97,111.
[53] Faghihi S;Azari F;Zhilyaev AP;Szpunar JA;Vali H;Tabrizian M.Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion.[J].Biomaterials,200727(27):3887-3895.
[54] PeiQing La;JiQiang Ma;Yuntian T. Zhu.Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation[J].Acta materialia,200519(19):5167-5173.
[55] Webster TJ;Ejiofor JU.Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.[J].Biomaterials,200419(19):4731-4739.
[56] 来敏 .钛材表面纳米结构化及其对骨髓间充质干细胞的影响[D].重庆大学,2013.
[57] Jung Yul Lim;Joshua C. Hansen;Christopher A. Siedlecki;James Runt;Henry J. Donahue.Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces[J].Journal of the Royal Society Interface,20052(2):97-108.
[58] Cavalcanti-Adam EA;Volberg T;Micoulet A;Kessler H;Geiger B;Spatz JP.Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands[J].Biophysical Journal,20078(8):2964-2974.
[59] Park,J.H.;Wasilewski,C.E.;Almodovar,N.;Olivares-Navarrete,R.;Boyan,B.D.;Tannenbaum,R.;Schwartz,Z..The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors[J].Biomaterials,201230(30):7386-7393.
[60] Bauer, Sebastian;Park, Jung;Faltenbacher, Josef;Berger, Steffen;von der Mark, Klaus;Schmuki, Patrik.Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays[J].Integrative Biology,20098/9(8/9):525-532.
[61] Oh, S;Brammer, KS;Li, YSJ;Teng, D;Engler, AJ;Chien, S;Jin, S.Stem cell fate dictated solely by altered nanotube dimension[J].Proceedings of the National Academy of Sciences of the United States of America,20097(7):2130-2135.
[62] 王薇 .种植体微纳米形貌对成骨细胞行为影响的分子机制研究[D].第四军医大学,2013.
[63] Hyzy,S.L.;Olivares-Navarrete,R.;Hutton,D.L.;Tan,C.;Boyan,B.D.;Schwartz,Z..Microstructured titanium regulates interleukin production by osteoblasts, an effect modulated by exogenous BMP-2[J].Acta biomaterialia,20133(3):5821-5829.
[64] Cooper LF.Advancing dental implant surface technology - From micron- to nanotopography.[J].Biomaterials,200828(28):3822-3835.
[65] 王丽华;牛强;黄宏宇;张述寅;沈舒宁;高麒;赵云转.基于HF酸蚀+阳极氧化处理的μm/nm表面对种植体早期骨结合的影响[J].口腔医学研究,2012(12):1211-1213.
[66] Gao L;Feng B;Wang J;Lu X;Liu D;Qu S;Weng J.Micro/nanostructural porous surface on titanium and bioactivity.[J].Journal of biomedical materials research, Part B. Applied biomaterials,20092(2):335-341.
[67] 李永锋;高媛;肖剑锐;孔亮;胡开进.微/纳米表面对骨质疏松下种植体骨结合的影响[J].口腔医学,2012(1):1-4.
[68] Eduardo M. Szesz;Bruno L. Pereira;Neide K. Kuromoto;Claudia E.B. Marino;Gelson B. de Souza;Paulo Soares.Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2013Jan.15(Jan.15):163-166.
[69] 王世振;孟维艳;矫国田;张滨;李保胜;窦林波;牛金城;蔡青.电解蚀刻法处理的钛及钛合金表面的对比研究[J].华西口腔医学杂志,2014(6):596-600.
[70] Yan, Yongda;Geng, Yanquan;Hu, Zhenjiang.Recent advances in AFM tip-based nanomechanical machining[J].International Journal of Machine Tools & Manufacture: Design, research and application,2015:1-18.
[71] Wang,W.;Zhao,L.;Ma,Q.;Wang,Q.;Chu,P.K.;Zhang,Y..The role of the Wnt/β-catenin pathway in the effect of implant topography on MG63 differentiation[J].Biomaterials,201232(32):7993-8002.
[72] Wang,W.;Zhao,L.;Wu,K.;Ma,Q.;Mei,S.;Chu,P.K.;Wang,Q.;Zhang,Y..The role of integrin-linked kinase/β-catenin pathway in the enhanced MG63 differentiation by micro/nano-textured topography[J].Biomaterials,20133(3):631-640.
[73] Zhao L;Mei S;Chu PK;Zhang Y;Wu Z.The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions.[J].Biomaterials,201019(19):5072-5082.
[74] 门博 .钛合金表面微纳结构设计制造及其生物活性研究[D].山东大学,2015.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%