欢迎登录材料期刊网

材料期刊网

高级检索

磁控溅射以溅射温度低、沉积速率高的特点而被广泛应用于各种薄膜制造中,如单层或复合薄膜、磁性或超导薄膜以及有一定用途的功能性薄膜等,在科学领域以及工业生产中发挥着不可替代的作用.在介绍磁控溅射原理的基础上,阐述了靶材刻蚀机理,针对传统磁控溅射系统中靶材利用率低、刻蚀形貌不均匀等现状,从改善靶面磁场分布和模拟靶材刻蚀形貌两方面对国内外最新的研究进展进行总结与分析.研究表明,通过改变磁体的空间布置或增加导磁片能有效改善靶面磁场分布,采用适当的运动部件实现磁场和靶材的相对运动能有效扩展靶材的溅射面积,提高靶材利用率.在靶材刻蚀模拟中,通过改变溅射过程中的工艺条件(磁场强度、工作电压等)来研究靶面等离子特性,结果显示靶材刻蚀形貌会随着磁场强度的增加而变窄,靶材刻蚀速率会随工作电压的增大而增大等,这些研究成果对磁控溅射工艺参数的优化具有指导意义.最后,对靶材冷却系统的设计、靶材表面处理等对溅射过程的影响进行了简要展望.

参考文献

[1] 石永敬;龙思远;王杰;潘复生.直流磁控溅射研究进展[J].材料导报,2008(1):65-69.
[2] 何金江;万小勇;周辰;李勇军;熊晓东;王兴权.半导体用高利用率长寿命溅射靶材的研制[J].半导体技术,2014(1):71-77.
[3] 余东海;王成勇;成晓玲;宋月贤.磁控溅射镀膜技术的发展[J].真空,2009(2):19-25.
[4] 郎文昌;高斌;杜昊;肖金泉;谢婷婷;王向红.多模式旋转磁场对电弧离子镀弧斑放电的影响分析[J].真空科学与技术学报,2015(6):662-670.
[5] 黄士勇;曲凤钦;苗晔.高靶材利用率的新型磁控溅射器[J].真空科学与技术学报,2000(2):123-125.
[6] 应春;沈杰;唐沪军;杨锡良;章壮健.高效率平面磁控溅射器的研制[J].真空科学与技术,1996(6):402-408.
[7] J. Musil.Rectangular magnetron with full target erosion[J].Journal of Vacuum Science & Technology, A. Vacuum, Surfaces, and Films,19992(2):555-563.
[8] 常天海.高磁场强度的矩形平面磁控溅射靶的设计[J].真空与低温,2003(01):17-20.
[9] Qiu QQ;Li QF;Su JJ;Jiao Y;Finely J.Simulation to improve the magnetic field in the straight section of the rectangular planar DC magnetron[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,20086(6):657-663.
[10] 赵嘉学;童洪辉.磁控溅射原理的深入探讨[J].真空,2004(4):74-79.
[11] 刘齐荣;董国波;高方圆;肖宇;刁训刚.平面磁控溅射靶磁场的模拟优化设计[J].真空科学与技术学报,2013(12):1223-1228.
[12] Yasunori Ohtsu;Masakazu Shigyo;Morito Akiyama;Tatsuo Tabaru.Production of radio frequency magnetron plasma by monopole arrangement of magnets for target uniform utilization[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,2014:403-407.
[13] Jang Sick Park;Lee Soon Park;Yun-Su Lee.Cathode Unit of Magnetron Sputter for High Target Utilization[J].Molecular crystals and liquid crystals,2009TN.514(TN.514):201-208.
[14] Br?uer, G.;Szyszka, B.;Verg?hl, M.;Bandorf, R..Magnetron sputtering - Milestones of 30 years[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,201012(12):1354-1359.
[15] 关奎之.旋转式圆柱形磁控溅射靶的磁场计算[J].真空,1997(03):5.
[16] 黄英;张以忱.圆柱旋转双面矩形磁控溅射靶磁场的设计计算[J].真空与低温,2001(4):233-237.
[17] Nadel SJ;Greene P;Rietzel J;Perata M;Malaszewski L;Hill R.Advanced generation of rotatable magnetron technology for high performance reactive sputtering[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20061/2(1/2):15-21.
[18] Iseki, T.Target utilization of planar magnetron sputtering using a rotating tilted unbalanced yoke magnet[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,20092(2):339-347.
[19] Iseki, T..Completely flat erosion magnetron sputtering using a rotating asymmetrical yoke magnet[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,201012(12):1372-1376.
[20] 邱清泉;励庆孚;苏静静;Jiao Yu;Finely Jim.平面直流磁控溅射放电等离子体模拟研究进展[J].真空科学与技术学报,2007(6):493-499.
[21] Fan, Q.H.;Galipeau, D.;Zhou, L.Q.;Gracio, J.J..Computer-aided development of a magnetron source with high target utilization[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,20118(8):833-838.
[22] 沈向前;谢泉;肖清泉;丰云.磁控溅射靶材刻蚀特性的模拟研究[J].真空,2012(1):65-69.
[23] Kuwahara K.;Fujiyama H..Application of the Child-Langmuir law to magnetron discharge plasmas[J].IEEE Transactions on Plasma Science,19944(4):442-448.
[24] Shon CH.;Lee JK..Modeling of magnetron sputtering plasmas[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,20021/4(1/4):258-269.
[25] Ekpe SD;Bezuidenhout LW;Dew SK.Deposition rate model of magnetron sputtered particles[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20051/2(1/2):330-336.
[26] Kusumoto Y;Iwata K.Numerical study of the characteristics of erosion in magnetron sputtering[J].Vacuum: Technology Applications & Ion Physics: The International Journal & Abstracting Service for Vacuum Science & Technology,20043/4(3/4):359-365.
[27] 弥谦;雷琳娜;袁建奇.磁约束磁控溅射源的工作特性测试[J].西安工业大学学报,2010(1):17-20.
[28] 弥谦;袁建奇.磁约束磁控溅射源的磁场设计[J].应用光学,2010(1):43-46.
[29] 黄英;李建军;张以忱;李傲.直流磁控溅射中矩形平面靶刻蚀形貌的数值计算及优化[J].真空科学与技术学报,2014(11):1206-1214.
[30] 甄淑颖;陈倪娇;唐光泽;马欣新.磁控溅射铜靶材的刻蚀行为[J].金属热处理,2013(2):99-102.
[31] 胡伟;王人成.磁控溅射设备中铜靶刻蚀形貌的仿真计算研究[J].真空科学与技术学报,2012(10):907-912.
[32] 夏原;高方圆;李光.高功率脉冲磁控溅射等离子体特性与动力学研究进展[J].中国科学院大学学报,2015(2):145-154.
[33] 李小婵;柯培玲;许辉;张栋;汪爱英.复合高功率脉冲磁控溅射放电等离子体特性[J].真空,2015(1):4-8.
[34] 李小婵;柯培玲;刘新才;汪爱英.复合高功率脉冲磁控溅射Ti的放电特性及薄膜制备[J].金属学报,2014(7):879-885.
[35] 吴忠振;田修波;李春伟;Ricky K.Y.Fu;潘锋;朱剑豪.高功率脉冲磁控溅射的阶段性放电特征[J].物理学报,2014(17):175201-1-175201-9.
[36] 关亚兰;崔秀清;刁训刚;王涛.TX1800磁控溅射镀膜机冷却系统的改进[J].真空与低温,2012(3):142-145.
[37] Yue-Tzu Yang;Feng-Hsiang Lai.Numerical investigation of cooling performance with the use of Al_2O_3/water nanofluids in a radial flow system[J].International Journal of Thermal Sciences,20111(1):61-72.
[38] 闫清泉;王国栋;王庆生;陈长琦.磁控溅射旋转阴极的换热计算与流固热耦合分析[J].真空科学与技术学报,2015(10):1276-1281.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%