目的 研究具有不同高度分布和自相关函数的表面形貌的粗糙度参数变化.方法 利用数字滤波法构造具有特定参数(如倾斜度、峰值、最快下降自相关长度和纹理高宽比、高度方差)的粗糙度表面,然后比较和分析不同类型形貌的参数.结果 算术平均峰曲率不随高度分布函数和自相关函数变化,均方根斜率、界面开发面积比和峰密度随各种高度分布函数和自相关函数变化的影响较大.结论 算术平均峰曲率不能表征高度分布和自相关函数.比较相同高度分布的表面形貌时,应对纹理高宽比、最快下降自相关长度、均方根斜率、界面开发面积比和峰密度进行比较.当比较不同高度分布的形貌时,应该对高度类参数倾斜度、峰值、高度均方根、最大高度、最大谷值和最大峰高进行比较.
The work aims to study the roughness parameters variation of morphology with different height distribution func-tions (HDF) and autocorrelation functions (ACF). The three-dimensional random surfaces of specific roughness parameters (eg., gradient, peak value, steepest descent autocorrelation length, texture aspect ratio and height variance) were constructed by using the two-dimensional digital filter method. The parameters of each morphology were compared and analyzed. Curvature of arithmetic mean peak did not depend on HDF and ACF; root-mean-square gradient, developed interfacial area ratio and peak density were heavily influenced by HDF and ACF. The arithmetic mean peak curvature can not be used to characterize the HDF and ACF. When surfaces generated from the same HDF were analyzed, texture aspect ratio, steepest descent autocorrelation length, root-mean-square gradient, developed interfacial area ratio and peak density should be compared. When surfaces gener-ated from the different HDFs were analyzed, height parameters such as gradient, peak value, height root-mean-square, maximum height, maximum valley value and maximum peak height should be compared.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%