在密度泛函理论框架下,用第一原理DMol团簇方法,基于Rice-Wang热力学模型研究了合金化元素Ti对bcc FeΣ3[110](111)晶界结合的影响.结果表明:合金化元素Ti在晶界和自由表面的偏聚能之差为-0.372 eV,Ti增强晶界结合,为韧性掺杂元素.Ti的化学效应起主要作用,贡献为-0.713 eV,表现为较强的增强晶界结合作用.力学效应即掺杂引起的局域畸变贡献为+0.341 eV,表现为减弱晶界结合的作用.同时分析了Ti对晶界键合的影响,当Ti原子占据晶界时,Ti使得距它较近的跨越晶界的键合加强,反映了Ti强化晶界的作用.
参考文献
[1] | Rice J R, Wang J S. Mater Sci Eng, 1989,A107:23 |
[2] | Griffith A A. Phil Trans Roy Soc A, 1920,200:163 |
[3] | Sagaert L P, Olson G B, Ellis D E. Phil Mag, 1998,B77:871 |
[4] | Wu R, Freeman A J, Olson G B. Phys Rev. 1994,B50:75 |
[5] | Zhong L, Wu R, Freeman A J, Olson G B. Phys Rev. 1997,B55:11133 |
[6] | Wu R, Freeman A J, Olson G B. Phys Rev. 1996,B53:7504 |
[7] | Wu R, Freeman A J, Olson G B. Science, 1994,265:376 |
[8] | Olson G B. Science, 1997,277:1237 |
[9] | Zhong L, Wu R, Freeman A J, Olson G B. Phys Rev, 2000,B62:13938 |
[10] | Feng Y, Wang C. Comput Mater Sci, 2001: 20:48 |
[11] | Barth U V, Hedin L. J Phys, 1972,C5:1629 |
[12] | Delley B J. J Chem Phys. 1991,94:7245 |
[13] | Freeman A J, Wu R. J Magn Magn Mater, 1992,100:494 |
[14] | Tang S P, Freeman A J, Olson G B. Phys Rev, 1993,B47:2441 |
[15] | Tang S P, Freeman, Olson G B. Phys Rev, 1994,B50:1 |
[16] | Vosko S J, Wilk L, Nusair M. Can J Phys, 1980,58:1200 |
[17] | Finnis M W, Sinclair J E. Phi Mag. 1984,A50:45 |
[18] | Finnis M W, Sinclair J E. Phi Mag, 1986,A53:161 |
[19] | Xiao S W, Wang C Y, Chen T L. The application of discrete variational method within framework of density functional theory in chemistry and materials physics. Beijing: Science press, 1998:144(肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中的应用北京:科学出版社,1998,144) |
[20] | Krasko G L, Olson G B. Solid State Commun, 1991,79:113 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%