建立了用于测算镍基单晶高温合金枝晶典型区域相成分的最优化数学模型.根据电子探针对枝晶典型区域成分的测定结果,运用BFGS拟Newton法及CONSTR约束优化算法,可以计算枝晶各典型区域中γ和γ'相成分.以镍基单晶合金CMSX 2和CMSX 4为对象,对优化测算结果进行了分析,证实了该方法的可行性.
参考文献
[1] | Schulze C, Feller-Kniepmeier M. Mater Sci Eng, 2000;281A: 204 |
[2] | Peng Z F, Ren Y Y, Zhang W, Yan P, Zhao J C, Wang Y Q. Acta Metall Sin, 2001; 37:345(彭志方,任遥遥,张伟,燕平,赵京晨,王延庆.金属学报,2001;37:345) |
[3] | Link T, Epishin A, Brückner U. Scr Mater, 1998; 39:1463 |
[4] | Link T, Epishin A, Brückner U, Portella P. Acta Mater,2000; 48:1981 |
[5] | Volkl R, Glatzel U, Feller-Kniepmeier M. Scr Mater,1998; 38:894 |
[6] | Chen B L. Theories and Algorithms of System Optimization. Beijing: Tsinghua University Press, 1989:8(陈宝林.系统最优化理论与算法.北京:清华大学出版社,1989:8) |
[7] | Hu S G, Shi B C. Principles of Optimization Algorithms.Wuhan: Huazhong University of Science and Technology,2000:5(胡适耕,施保昌.最优化原理.武汉:华中理工大学出版社,2000:5) |
[8] | Du Z, Luo Y. A Scientific Algorithm Program-MATLAB.Tianjin: Nankai University Press, 1998:12(杜藏,骆源.科学计算语言MATLAB.天津:南开大学出版社,1998:12) |
[9] | Zheng Y R, Zhang D T. Color Metallographic Investigation of Superalloys and Steels. Beijing: National Defense Industry Press, 1997:10(郑运荣,张德堂.高温合金与钢的彩色金相研究.北京:国防工业出版社,1997:10) |
[10] | Caron P, Khan T. Mater Sci Eng, 1983; 61:173 |
[11] | Pollock T M, Argon A S. Acta Metall Mater, 1994; 42:1859 |
[12] | Glatzel U. Microstructure and Internal Strains of Undeformed and Creep Deformed Samples of a Nickel-Base Superalloy. Berlin: Verlag Dr. Koster, 1994:14 |
[13] | Brückner U, Epishin A, Link T. Acta Mater, 1997; 45:5228 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%