欢迎登录材料期刊网

材料期刊网

高级检索

在对颗粒强化理论和位错蠕变理论进行回顾、评价基础上,发展了一个位错蠕变阻力模型,认为蠕变阻力是影响铸造镍基高温合金蠕变机制的重要因素.当施加应力足以使位错切入γ'相时,主要蠕变机制是位错切割γ'相过程,蠕变阻力就是位错切入γ'相的临界门槛应力.在低施加应力区,位错只能借助于热激活攀移过程通过γ'相.蠕变阻力包括两部分:第一项是位错攀移临界门槛应力,与施加应力无关;第二项是与施加应力有关的阻力项,代表了其他强化机制的贡献.位错攀移机制蠕变阻力的上限是切割机制门槛应力.在3种铸造镍基高温合金中(定向凝固DZ17G合金,IN100合金和IN738合金),对上述模型进行了验证,理论计算应用了SL强化理论,与实测值符合较好.

参考文献

[1] Ross E W and Sims C T. In: Sims C T, Stoloff N S, Hagel W C eds, Superalloys II, John Wiley and Sons, New York,1997:97
[2] Betteridge W, Shaw S W K. Mater Sci Technol, 1987; 3:682
[3] Nabarro F R N, De Villiers H L. The Physics of Creep.Taylor and Francis Ltd, London, 1997:83
[4] Brown L M, Ham R K. In: Kelly A, Nicholson R Beds,Strengthening Methods in Crystals, Elsevier, Amsterdam,1971:9
[5] Schwarz R B, Labusch R. J Appl Phys, 1978; 49:5174
[6] Reppich B. In: Mughrabi H ed, Plastic Deformation and Fracture of Materials, VCH, Weinheim, 1993:315
[7] Yuan C, Guo J T, Yang H C, Wang S H. Scr Metall, 1998;39:991
[8] McLean M. Acta Metall, 1985; 33:545
[9] Coply S M, Kear B H. Trans TMS-AIME, 1967; 239:984
[10] Shewfelt R S W, Brown L M. Philos Mag A, 1977; 35:945
[11] Gleiter H, Hornbogen E. Phys Stat Sol, 1965; 12:235
[12] Reppich B. Acta Metall, 1982; 30:87
[13] Reppich B, Schepp P, Wehuer G. Acta Metall, 1982; 30:95
[14] Ardell A J. Metall Trans A, 1985; 16A: 2131
[15] Reppich B, Kuhlein W, Meyer G, Puppel D, Schulz M,Schumann G. Mater Sci Eng, 1986; 83:45
[16] Schanzer S, Nembach E. Acta Metall Mater, 1992; 40:803
[17] McLean D. Rep Prog Phys, 1966; 29:1
[18] Gittus J H. Acta Metall, 1974; 22:789
[19] Weertman J. J Appl Phys, 1957; 28:362
[20] Weertman J, Weertman J R. In: Cahn R W, Haasen P eds, Physical Metallurgy, Elsevier, Amsterdam, 1983:3
[21] Gibeling J C, Nix W D. Acta Metall, 1981; 29:1000
[22] Argon A S, Takeuchi S. Acta Metall, 1981; 29:1877
[23] Frost H J, Ashby M F. Deformation-Mechanism Maps:The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford, 1982:21
[24] Jansen A M and Dunand D C. Acta Metall Mater, 1997;45:4583
[25] Lagneborg R, Bergman B. Met Sci J, 1976; 10:20
[26] Lupinc V. In: Brunetaud R ed, High Temperature Alloys for Gas Turbines 1982, Dordrecht Reidel Publishing Company, Dordrecht, 1982:395
[27] Oliver W C, Nix W D. Acta Metall, 1982; 30:1335
[28] Ajaja O, Howson T E, Purushothaman S, Tien J K. Mater Sci Eng, 1980; A44:165
[29] Davies G C, Jones D R H. Scr Metall, 1996; 35:523
[30] Weertman J. J Appl Phys, 1957; 28:362
[31] Barrett C R, Nix W D. Acta Metall, 1961; 13:1247
[32] Weertman J. Trans ASM, 1968; 61:681
[33] Davies P W, Wilshire B. Scr Metall, 1971; 5:475
[34] Davies P W, Wilshire B. Met Sci J, 1975; 9:248
[35] Takeuchi S, Argon A S. J Mater Sci, 1976; 11:1542
[36] Hausselt J H, Nix W D. Acta Metall, 1977; 25:1491
[37] Dennison J P, Holmes P D, Wilshire B. Mater Sci Eng,1978; A33:35
[38] Purushothaman S, Tien J K. Acta Metall, 1978; 26:519
[39] Evans W J, Harrison G F. Met Sci J, 1979; 13:346
[40] Burt H, Dennison J P, Wilshire B. Met Sci J, 1979; 13:295
[41] McLean M. Proc R Soc, 1980; A373:93
[42] Guo Jianting, Ranucci D, Picco E, Strocchi P M. Metall Trans A, 1983; 14A: 2329
[43] Wukherji D, Cabrisch H, Chen W, Fecht H J, Wahi R P.Acta Metall, 1997; 45:3143
[44] Nelmes G, Wilshire B. Scr Metall, 1976; 10:697
[45] Rouault-Rogez H, Dupeux M, Ignat M. Acta Metall, 1994;42:3137
[46] Stevens R A, Flewitt P E J. Acta Metall, 1981; 29:867
[47] Lagneborg R. Scr Metall, 1973; 7:605
[48] Evans H E, Knowles G. Met Sci J, 1980; 14:262
[49] Guo J T, Yuan C, Yang H C, Lupinc V, Maldili M. Metall Mater Trans A, 2001; 31A: 1103
[50] Stevens R A, Flewitt P E J. Mater Sci Eng, 1979; A37:237
[51] Henderson P J, McLean M. Acta Metall, 1983; 31:1203
[52] Douin J, Veyssiere P, Beauchamp P. Philos Mag, 1986;A54:375
[53] Pollock T M, Argon A S. Acta Metall, 1992; 40:1
[54] Martenus V, Nembach E. Acta Metall, 1975; 23:149
[55] Haasen P, Labusch R. Strength of Metals and Alloys.Pergamon Press, Frankfurt, 1979:639
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%