运用非Fourier传热理论建立了金属快速凝固过程中的非平衡传热理论模型,包括非Fourier方程的建立、传热与相变模拟.模拟计算表明:(1)在溅射激冷条件下,界面换热系数越大,界面冷却速度和移动速度也越高.在界面换热系数相同时,计算得到的界面冷却速度随着固-液界面高度的提高呈现先上升而后下降的变化趋势;计算得到的冷却速度值明显小于Fourier定律的计算值.(2)在激光加热条件下,计算的界面移动速度在凝固开始时先急剧增加,然后渐趋平稳.计算还表明,金属的过热度及过冷度与其热物性相关.
参考文献
[1] | Joseph D D, Preziosi L. Rev Mod Phys, 1990; 62:375 |
[2] | Vernotte P. Compt Rend Acad Sci, 1958; 246:3154 |
[3] | Morse P M, Feshbach H. Methods of Theoretical Physics.Vol. I, New York: McGraw-Hill, 1953:119 |
[4] | Glass D E, Ozisik M N , Kim W S. Numerical Heat Transfer, 1990; 18A: 503 |
[5] | Gembarovic J, Majernik V. Int J Heat Mass Transfer,1988; 31:1073 |
[6] | Tang D W, Araki N. Int J Heat Mass Transfer, 1996;39:1585 |
[7] | Sadd M H, Didiake J E. J Heat Transfer, 1977; 99:25 |
[8] | Anderson D A, Tannehill J C, Pletcher R H. Computational Fluid Mechanics and Heat Transfer. Washington D.C.: Hemisphere, 1984 |
[9] | Turnbull D. In: Gensamer M, Brick R M, Hollomon J H,Cohen M, Zener C, Jackson L R, eds., Thermodynamics in Physical Metallurgy, Metals Park, OH: American Society for Metals, 1949:282 |
[10] | Jackson K A. In: Ueda R, Mullin J B, eds., Crystal Growth and Characterization. Amsterdam: North-Holland Publication, 1974:21 |
[11] | Cahn J W, Hillig W B, Sears G W. Acta Metall, 1964; 12:1421 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%