对一种C-Si-Mn-Cr合金钢,通过900℃奥氏体化20min,空冷及280与370℃回火2 h,获得抗拉强度为1500MPa的新型无碳化物贝氏体/马氏体(B/M)复相组织高强钢.采用C-T试样进行疲劳实验,测定了疲劳裂纹扩展速率(da/dN)及疲劳门槛值(ΔK(th)),利用扫描电镜观测了疲劳裂纹在疲劳循环过程中的扩展路径,分析断口形貌与显微组织间的关系.结果表明,这种无碳化物B/M复相高强钢具有较高的ΔK(th)值,并且能明显地降低da/dN,其原因在于B/M复相组织高强钢独特的精细组织结构及疲劳裂纹尖端的闭合抗力的提高.
参考文献
[1] | Tomita Y, Okabayashi K. Metall Trans, 1983; 14A: 485 |
[2] | Tomita Y, Okabayashi K. Metall Trans, 1985; 16A: 73 |
[3] | Tomita Y, Okabayashi K. Metall Trans, 1983; 14A: 2387 |
[4] | Yu M T, Topper T H, Wang L. Int J Fatigue, 1988; 10: 249 |
[5] | Fang H S, Zheng Y K, Chen X Y, Zhao R, Zhou X. J Met, 1988; 40(3): 51 |
[6] | Huang W G, Fang H S, Zheng Y K. Trans Met Heat Treat, 1997; 18(1): 8(黄维刚,方鸿生,郑燕康.金属热处理学报,1997;18(1):8) |
[7] | Fang H S, Liu D Y, Xu P G, Bai B Z, Yang Z G. Mater Mech Eng, 2001; 25(6): 1(方鸿生,刘东雨,徐平光,白秉哲,杨志刚.机械工程材料,2001;25(6):1) |
[8] | Moore T D. Structural Alloys Handbook. Vol.1, Traverse City, Michigan: Mechanical Properties Data Center, Belfour Stulen, Inc., 1975:97 |
[9] | Berns H, Wener L. Theor Appl Fract Mech, 1986; 6:11 |
[10] | Miihkinen V T T, Edmonds D V. Mater Sci Technol, 1987; 6:441 |
[11] | Ritchie R O, Castrocedeno M H, Zackay V F, Parker E R Metall Trans, 1978; 9A: 35 |
[12] | Fleck N A. In: Smith R A, ed., Fatigue Crack Growth 30 Years of Progress, Oxford: Pergamon Press, 1986:75 |
[13] | Beevers C J, Carlson R L. In: Smith R A, ed., Fatigue Crock Growth 30 Years of Progress, Oxford: Pergamon Press, 1986:89 |
[14] | Elber W. Eng Fract Mech, 1970; 2:37 |
[15] | Paris P C, Bucci R J, Wessel E T, Clarke W G, Mager T R. ASTM STP 513, 1972 |
[16] | Stewart A T. Eng Fract MecA, 1980; 13:463 |
[17] | Suresh S, Ritchie R O. Metall Trans, 1982; 13A: 1627 |
[18] | Halliday M D, Beevers C J. Int J Fract, 1979; 15(1): R27 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%