以三维弹塑性断裂理论为基础,对有限厚度板裂纹端部应力场、三维应力约束进行了分析,通过对不同厚度、不同初始裂纹长度在不同温度下三点弯曲试件的断裂韧性测试断口观测和理论分析获得如下结果:离面约束对裂尖应力场及断裂韧性有强烈的影响;断口均产生分层裂纹,其位置、大小和数量与试样厚度、温度和裂纹初始长度有关;温度较低时,分层裂纹距主裂纹根部一定距离,分层裂纹宽度较小,对厚度效应影响较小;温度较高时,分层裂纹首先出现在主裂纹根部,分层裂纹宽度较大且充分张开,降低了试样的有效厚度.对X70管线钢进行性能评价时必须考虑管道壁厚、层裂和环境温度的耦合作用.
参考文献
[1] | Li H L. Welded Pipe Tube, 2000; 23:43(李鹤林.焊管,2000;23:43) |
[2] | Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials. 2nd Edition, New York: Wiley, 1983:353 |
[3] | Guo W L, Dong H R, Yang Z, Lu M X, Zhao X W, Luo J H. Acta Metall Sin, 2001; 37:386(郭万林,董蕙茹,杨政,路民旭,赵新伟,罗金衡.金属学报,2001;37:386) |
[4] | Guo W L, Dong H R, Lu M X, Zhao X W. Int J Pressure Vessels Piping, 2002; 79:403 |
[5] | Kuang Z B, Ma F S. Crack Tip Fields. Xi'an : Xi'anJiaotong University Press, 2002:71(匡震邦,马法尚.裂纹端部场.西安:西安交通大学出版社,2002:71) |
[6] | Kwon S W, Sun C T. Int J Fract, 2000; 104:291 |
[7] | Rice J R. J Mech Phys Solids, 1968; 16:1 |
[8] | Hutchinson J W. J Mech Phys Solids, 1968; 16:13 |
[9] | O'Dowd N P, Shih C F. J Mech Phys Solids, 1991; 39:989 |
[10] | Guo W L. Eng Fract Mech, 1995; 46(1): 51 |
[11] | Narasimhan R, Rosakis A J. J Appl Mech, 1990; 57, 607 |
[12] | Nakamura T, Parks D M. J Mech Phys Solids, 1990; 38, 787 |
[13] | GB 4161-84, Standard Test Method for Plane StrainFracture Toughness of Metallic Materials, 1984(GB 4161-84,金属材料平面应变断裂韧性KIc试验方法,1984) |
[14] | ASTM E399-83, Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials, 1983 |
[15] | ASTM E813-81, Metallic Materials-Standard Test Method for JIc, A Measure of Ductile Fracture Toughness, 1981 |
[16] | GB 2038-91, Metallic Materials-Standard Test Method for JIc , a Measure Fracture Toughness, 1991 (GB 2038-91,金属材料延性断裂韧度JIc试验方法,1991) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%