采用有限元数值分析方法,模拟了含氢化物Zr-4合金拉-扭双轴比例加载下的变形行为.相同外加等效应变下,加载路径对含氢化物Zr-4合金的应力、应变分量的大小和分布有明显的影响,而对其等效应力-应变曲线影响较小.不同加载路径下,Zr-4合金基体的最大静水拉应力区位于氢化物与基体的界面附近.随着拉伸-扭转应变比的增加,基体中最大静水拉应力增加,而最大静水拉应力位置与外加剪切方向的夹角由45°逐渐转向90°.
参考文献
[1] | Chan K S. Acta Metall Mater, 1995; 43:4325 |
[2] | Bai J B, Ji N, Gilbon D, Prioul C, Francois D. Metall Trans, 1994; 25A: 1185, 1199 |
[3] | Puls M P. Metall Trans, 1991; 22A: 2327 |
[4] | Ding X D, Wang R H, Liu G, Xiao L, Sun J. Acta MetallSin, 2003; 39:267(丁向东,王瑞红,刘刚,肖林,孙军金属学报,2003;39: 267) |
[5] | Prat F, Grange M, Besson J, Andrieu E. Metall MaterTrans, 1998; 29:1643 |
[6] | Lin S C, Hamasaki M, Chuang Y D. Nucl Sci Eng, 1979;71:251 |
[7] | Varias A G, Massih A R. J Nucl Mater, 2000; 279:273 |
[8] | Xiao L, Gu H C. ASME J Eng Mater Technol, 1998; 120:114 |
[9] | Xiao L, Umakoshi Y, Sun J. Mater Sci Eng, 2000; 292A:40 |
[10] | Grange M, Besson J, Andrieu E. Metall Mater Trans,2000; 31A: 679 |
[11] | Kozaczek K J, Sinharoy A, Ruud C O, Mcilree A R. Mod-ell Simul Mater Sci Eng, 1995; 36:829 |
[12] | Antretter T, Fischer F D. Mater Sci Eng, 1997; 237A: 6 |
[13] | Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S. J Alloys Compd, 1999; 293:23 |
[14] | Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S. J Alloys Compd, 1999; 293:908 |
[15] | Ding X D, Lian J S, Jiang Z H, Sun J. Trans NonferrousMet Soc Chin, 2001; 11:503 |
[16] | Hom C L, Mcmeeking R M. Int J Plastic, 1991; 7:255 |
[17] | Xu X Q, Watt D F. Acta Mater, 1996; 44:801 |
[18] | Dutta I, Sims J D, Seigenthaler D M. Acta Metall Mater,1993; 41:885 |
[19] | Sun J, Li Z H, Deng Z J, Tu M J. Eng Fract Mech, 1990;36:321 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%