以恒应力方式在Mayes试验机上对自行研制的铸造Mg-Y-Nd合金进行了压缩蠕变实验.结果表明:在温度低于300℃、应力低于100 MPa条件下,Mg-Y-Nd合金具有极其优良的蠕变性能,特别是在200℃时,该合金的稳态蠕变速率较Mg-Zn-Ce合金和普通的AZ80,AM60合金降低约3个数量级;滑移和孪生是Mg-Y-Nd合金蠕变变形的基本方式;大量的β相和蠕变期间沉淀相动态析出产生的沉淀强化和晶界强化是提高该合金蠕变抗力的主要机制,MgO质点薄层(在α-Mg/β相界面间)及其独立聚合区(脱离β相)的生成、动态再结晶的发展和初生β相的断裂是降低该合金蠕变抗力的主要原因.
参考文献
[1] | Mohri T, Mabuchi M, Saito N, Nakamura M. Mater SciEng, 1998: A257:287 |
[2] | Bae D H, Kim D H. Magnesium Technology, In: Kaplan H I ed, TMS, The Minerals, Metals and Materials Society,2002:141 |
[3] | Wang Q D, Lii Y Z, Zeng X Q, Ding W J, Zhu Y P. Special Casting and Nonferrous Alloy, 1999: 1:40(王渠东,吕宜振,曾小勤,丁文江,朱燕萍.特种铸造及有色合金,1999:1:40) |
[4] | Moreno I P, Nandy T K, Jones J W, Allison J E, PollockT M. Magnesium Technology, In: Kaplan H I ed, TMS, The Minerals, Metals and Materials Society, 2002:111 |
[5] | Abe E, Takakura H, Singh A, Tsai A P. J Alloys and Compds, 1999: 283:169 |
[6] | Maruyama K, Suzuki M, Sato H. Metall Mater Trans,2002: 33A: 875 |
[7] | Guo X T, Li P J, Zeng D B. Transactions of Materials and Heat Treatment, 2001: 22(Suppl): 115(郭旭涛,李培杰,曾大本.材料热处理学报,2001:22(Supp1):115) |
[8] | Nie J F, Muddle B C. Acta Mater, 2000: 48:1691 |
[9] | Khosroshahi R A. Magnesium Alloys and Their Applica tions, In: Kainer K U ed, WILEY-VCH, New York, 2000: 711 |
[10] | Suzuki M, Sato H, Maruyama K, Oikawa H. Mater SciEng, 1998: 252A: 248 |
[11] | Nie J F, Muddle B C. Scr Mater, 1999: 40:1089 |
[12] | Apps P J, Karimzadeh H, King J F, Lorimer G W. Scr Mater, 2003: 48:1023 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%