对均匀弥散分布着γ氢化物的低氢含量的工业纯钛进行循环疲劳试验.发现在氢化物碎化之前,位错可以穿过氢化物和基体的共格界面,从而使氢化物发生剪切变形,然而在氢化物碎化之后,位错则不能继续穿过界面,而是在界面处缠结.这被归结于由于氢化物尺寸发生变化导致氢化物内部应力降低,氢化物不能继续发生剪切变形所致.透射电镜观察表明,在氢化物的内部至少能激发3套滑移系统.为了协调氢化物和基体之间的不均匀变形,在氢化物和基体内部都发生了晶体旋转,并且氢化物和基体之间的取向关系遭到了破坏.对相应的晶体旋转的机制进行了讨论.
参考文献
[1] | Grange M, Besson J, Andrieu E. Metall Mater Trans,2000: 31A: 679 |
[2] | Puls M P. Metall Trans, 1991: 22A: 2327 |
[3] | Bai J B, Prioul C, Francois D. Metall Mater Trans, 1994:25A: 1185 |
[4] | Teter D F, Robertson I M, Birnbaum H K. Acta Mater,2001: 49:4313 |
[5] | Shih D S, Robertson I M, Birnbaum H K. Acta Metall,1988: 32:111 |
[6] | Huez J, Feaugas X, Helbert A L, Guillot I, Clavel M. Metall Mater Trans, 1998: 29A: 1615 |
[7] | Guillot I, Feaugas X, Clavel M. Scr Mater, 2001: 44:1011 |
[8] | Bai J B, Ji N, Gilbon D, Leburn J L. Scr Metall Mater,1992: 26:369 |
[9] | Chen C Q, Li S X, Lu K. Acta Mater, 2003: 51:931 |
[10] | Chen C Q, Li S X, Lu K. Acta Metall Sin, 2003: 39:120(陈常强,李守新,卢柯.金属学报,2003:39:120) |
[11] | Stevenson R, Breedis J F. Acta Metall, 1975: 23:1419 |
[12] | Naka S, Lasalmonie A, Costa P, Kubin L. Philos Mag,1988: 57:717 |
[13] | Dickson J I, Handfirld L, L'Esperance G. Mater Sci Eng,1983: 60:L3 |
[14] | Song S, Gray Ⅲ G T. Philos Mag, 1995: 71:263 |
[15] | Crecy A D, Bourret A, Naka S, Lasalmonie A. Philos Mag,1983: 47:245 |
[16] | Chateau J P, Delafosse D, Magnin T. Acta Mater, 2002:50:1507 |
[17] | Bourret A, Lasalmonie A, Naka S. Scr Metall, 1986: 20:861 |
[18] | Gibson M A, Forwood C T. Philos Mag, 2000: 80:2747 |
[19] | Eshelby J D. Proc Roy Soc, 1957: A241:376 |
[20] | Beremin F M. Metall Trans, 1981: 12A: 723 |
[21] | Calabrese C, Laird C. Mater Sci Eng, 1974: 13:141 |
[22] | Panin V E. Acta Metall Sin, 1997: 33:187(Panin V E.金属学报,1997: 33: 187) |
[23] | Konig G, Blum W. Acta Metall, 1980: 28:519 |
[24] | Holt D L. J Appl Phys, 1970: 41:3197 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%