欢迎登录材料期刊网

材料期刊网

高级检索

在常见的应变速率范围内,多数金属材料的冷加工变形主要是通过位错增殖、形变孪晶或马氏体相变等机制实现,这些变形机制无法有效地细化晶粒,通常只有采用剧烈塑性变形方法制备无缺陷的金属纳米材料.最近在研究β型Ti-Nb-Zr-Sn钛合金形变过程时,发现塑性失稳导致局域化非均匀塑性变形对晶粒细化具有显著作用;利用该变形机理,采用常规冷轧方法即可以轧制出厚度为1.5 mm板材,其晶粒尺寸小于50 nm.本文主要论述该合金冷加工组织细化过程和时效强化机理,并讨论非均匀塑性变形方式的可能原因.

参考文献

[1] Gleiter H. Prog Mater Sci, 1989; 33:223
[2] Valiev R Z. Nature Mater, 2004; 3:511
[3] Valiev R Z. Acta Mater, 1994; 42:2467
[4] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45:102
[5] Sergueeva A V, Song C, Valiev R Z, Mukherjee A K. Mater Sci Eng, 2003; A339:159
[6] Stolyarov V V, Zhu Y T, Alexandrov I V, Lowe T C, Valiev R Z. Mater Sci Eng, 2003; A343:43
[7] Hao Y L, Li S J, Sun S Y, Zheng C Y, Hu Q M, Yang R.Appl Phys Lett, 2005; 87:091906
[8] Jamieson J C. Science, 1963; 140:72
[9] Vohra Y K, Spencer P T. Phys Rev Lett, 2001; 86:3068
[10] Akahama Y, Kawamura H, Bihan T L. Phys Rev Lett,2001; 87:275503
[11] Sikka S K, Vohra Y K, Chidambaram R. Prog Mater Sci,1982; 27:245
[12] Bagariatskii Yu A, Nosova G I, Tagunova T V. Dok Akad Nauk SSSR, 1958; 122:593
[13] Luke C A, Taggart R, Polonis D H. Trans ASM, 1964; 57:142
[14] Fisher E S, Dever D. Acta Metall, 1970; 18:265
[15] Collings E W, Ho J C. Phys Rev, 1972; 5:4435
[16] Collings E W, Gegel H L. Scr Metall, 1973; 7:437
[17] Collings E W. Physical Metallurgy of Titanium Alloys.ASM, Metals Park, OH, 1984:78
[18] Barsoum M W, Farber L, El-Raghy T. Metall Mater Trans, 1999; 30A: 1727
[19] Barsoum M W, Zhen T, Kalidindi S R, Radovic M, Murugaiah A. Nature Mater, 2003; 2:107
[20] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A,Follstaedt D M, Mao S X. Science, 2004; 305:654
[21] Wolf D, Yamakov V, Phillpot S R, Mukherjee A, Gleiter H. Acta Mater, 2005; 53:1
[22] Hasnaoui A, van Swygenhoven H, Derlet P M. Science,2003; 300:1550
[23] Jia D, Ramesh K T, Ma E. Acta Mater, 2003; 51:3495
[24] Wei Q, Kecskes L, Jiao T, Hartwig K T, Ramesh K T, Ma E. Acta Mater, 2004; 52:1859
[25] Hart E W. Acta Metall, 1967; 15:351
[26] Kumar K S, Van Swygenhoven H, Suresh S. Acta Mater,2003; 51:5743
[27] Morris Jr J W, Clatterbuck D M, Chrzan D C, Krenn C R, Luo W, Cohen M L. Mater Sci Forum, 2003; 426-432:4429
[28] Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K,Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T,Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T. Science, 2003; 300:464
[29] Zhu Y T, Huang J Y, Gubicza J, Ungár T, Wang Y M,Ma E, Valiev R Z. J Mater Res, 2003; 18:1908
[30] Valiev R Z, Sergueeva A V, Mukherjee A K. Scr Mater,2003; 49:669
[31] Lu K, Lu J. Mater Sci Eng, 2004; A375-377:38
[32] Liao X Z, Zhao Y H, Zhu Y T, Valiev R Z, Gunderov D V. J Appl Phys, 2004; 96:636
[33] Suzuki T, Wuttig M. Acta Metall, 1975; 23:1069
[34] Williams J C. In: Jaffee R I, Burte H M eds., Titanium Science and Technology (Proc. 2nd Int. Conf. on Titanium), New York: Plenum, 1973:1433
[35] Ahluwalia R, Lookman T, Saxena A. Phys Rev Lett, 2003;91:055501
[36] Tolbert S H, Alivisatos A P. Science, 1994; 265:373
[37] Perez-Prado M T, Hines J A, Vecchio K S. Acta Mater,2001; 49:2905
[38] Bailey J E, Hirsch P B. Proc R Soc London, 1962; 267A:11
[39] Li J C M. J Appl Phys, 1962; 33:2958
[40] Guduru P R, Ravichandran G, Rosakis A J. Phys Rev,2001; 64E: 036128
[41] Williams J C, Baggerly R G, Paton N E. Metall Trans,2002; 33A: 837
[42] Damiano U U. Trans TMS-AIME, 1969; 245:637
[43] Srinivasan S G, Hatch D M, Stokes H T, Saxena A, Albers R C, Lookman T. arXiv:cond-mat/0209530 v1, 23 Sep.,2002
[44] Orowan E. Nature, 1942; 149:463
[45] Roundy D, Krenn C R, Cohen M L, Morris Jr J W. Philos Mag, 2001; 81A: 1725
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%