在常见的应变速率范围内,多数金属材料的冷加工变形主要是通过位错增殖、形变孪晶或马氏体相变等机制实现,这些变形机制无法有效地细化晶粒,通常只有采用剧烈塑性变形方法制备无缺陷的金属纳米材料.最近在研究β型Ti-Nb-Zr-Sn钛合金形变过程时,发现塑性失稳导致局域化非均匀塑性变形对晶粒细化具有显著作用;利用该变形机理,采用常规冷轧方法即可以轧制出厚度为1.5 mm板材,其晶粒尺寸小于50 nm.本文主要论述该合金冷加工组织细化过程和时效强化机理,并讨论非均匀塑性变形方式的可能原因.
参考文献
[1] | Gleiter H. Prog Mater Sci, 1989; 33:223 |
[2] | Valiev R Z. Nature Mater, 2004; 3:511 |
[3] | Valiev R Z. Acta Mater, 1994; 42:2467 |
[4] | Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45:102 |
[5] | Sergueeva A V, Song C, Valiev R Z, Mukherjee A K. Mater Sci Eng, 2003; A339:159 |
[6] | Stolyarov V V, Zhu Y T, Alexandrov I V, Lowe T C, Valiev R Z. Mater Sci Eng, 2003; A343:43 |
[7] | Hao Y L, Li S J, Sun S Y, Zheng C Y, Hu Q M, Yang R.Appl Phys Lett, 2005; 87:091906 |
[8] | Jamieson J C. Science, 1963; 140:72 |
[9] | Vohra Y K, Spencer P T. Phys Rev Lett, 2001; 86:3068 |
[10] | Akahama Y, Kawamura H, Bihan T L. Phys Rev Lett,2001; 87:275503 |
[11] | Sikka S K, Vohra Y K, Chidambaram R. Prog Mater Sci,1982; 27:245 |
[12] | Bagariatskii Yu A, Nosova G I, Tagunova T V. Dok Akad Nauk SSSR, 1958; 122:593 |
[13] | Luke C A, Taggart R, Polonis D H. Trans ASM, 1964; 57:142 |
[14] | Fisher E S, Dever D. Acta Metall, 1970; 18:265 |
[15] | Collings E W, Ho J C. Phys Rev, 1972; 5:4435 |
[16] | Collings E W, Gegel H L. Scr Metall, 1973; 7:437 |
[17] | Collings E W. Physical Metallurgy of Titanium Alloys.ASM, Metals Park, OH, 1984:78 |
[18] | Barsoum M W, Farber L, El-Raghy T. Metall Mater Trans, 1999; 30A: 1727 |
[19] | Barsoum M W, Zhen T, Kalidindi S R, Radovic M, Murugaiah A. Nature Mater, 2003; 2:107 |
[20] | Shan Z W, Stach E A, Wiezorek J M K, Knapp J A,Follstaedt D M, Mao S X. Science, 2004; 305:654 |
[21] | Wolf D, Yamakov V, Phillpot S R, Mukherjee A, Gleiter H. Acta Mater, 2005; 53:1 |
[22] | Hasnaoui A, van Swygenhoven H, Derlet P M. Science,2003; 300:1550 |
[23] | Jia D, Ramesh K T, Ma E. Acta Mater, 2003; 51:3495 |
[24] | Wei Q, Kecskes L, Jiao T, Hartwig K T, Ramesh K T, Ma E. Acta Mater, 2004; 52:1859 |
[25] | Hart E W. Acta Metall, 1967; 15:351 |
[26] | Kumar K S, Van Swygenhoven H, Suresh S. Acta Mater,2003; 51:5743 |
[27] | Morris Jr J W, Clatterbuck D M, Chrzan D C, Krenn C R, Luo W, Cohen M L. Mater Sci Forum, 2003; 426-432:4429 |
[28] | Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K,Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T,Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T. Science, 2003; 300:464 |
[29] | Zhu Y T, Huang J Y, Gubicza J, Ungár T, Wang Y M,Ma E, Valiev R Z. J Mater Res, 2003; 18:1908 |
[30] | Valiev R Z, Sergueeva A V, Mukherjee A K. Scr Mater,2003; 49:669 |
[31] | Lu K, Lu J. Mater Sci Eng, 2004; A375-377:38 |
[32] | Liao X Z, Zhao Y H, Zhu Y T, Valiev R Z, Gunderov D V. J Appl Phys, 2004; 96:636 |
[33] | Suzuki T, Wuttig M. Acta Metall, 1975; 23:1069 |
[34] | Williams J C. In: Jaffee R I, Burte H M eds., Titanium Science and Technology (Proc. 2nd Int. Conf. on Titanium), New York: Plenum, 1973:1433 |
[35] | Ahluwalia R, Lookman T, Saxena A. Phys Rev Lett, 2003;91:055501 |
[36] | Tolbert S H, Alivisatos A P. Science, 1994; 265:373 |
[37] | Perez-Prado M T, Hines J A, Vecchio K S. Acta Mater,2001; 49:2905 |
[38] | Bailey J E, Hirsch P B. Proc R Soc London, 1962; 267A:11 |
[39] | Li J C M. J Appl Phys, 1962; 33:2958 |
[40] | Guduru P R, Ravichandran G, Rosakis A J. Phys Rev,2001; 64E: 036128 |
[41] | Williams J C, Baggerly R G, Paton N E. Metall Trans,2002; 33A: 837 |
[42] | Damiano U U. Trans TMS-AIME, 1969; 245:637 |
[43] | Srinivasan S G, Hatch D M, Stokes H T, Saxena A, Albers R C, Lookman T. arXiv:cond-mat/0209530 v1, 23 Sep.,2002 |
[44] | Orowan E. Nature, 1942; 149:463 |
[45] | Roundy D, Krenn C R, Cohen M L, Morris Jr J W. Philos Mag, 2001; 81A: 1725 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%