研究了Ti1+xCr1.2Mn0.8(x=0.0,0.1,0.2,0.3)系和Ti1+xCr1.2Mn0.8-yMy(M=Fe,Ni,Cu,V,VFe;x=0.0,0.1;y=0.1,0.3)系AB2型合金的储氢性能和晶体结构.XRD结果表明,合金主相为C14(MgZn2)型Laves相,可以保证较高的吸、放氢量.通过A侧过化学计量以及B侧用Fe,Ni,Cu,V,VFe分别替代部分Mn,增加了点阵常数和晶胞体积,降低了P-C-T曲线的滞后.由相应数据寻找出适合于金属氢化物氢压缩机的高压端储氢合金.结果表明,合金TiCr1.2Mn0.5Fe0.3与Ti1.1Cr1.2Mn0.5Cu0.3具有良好的储氢性能和压缩特性,可以作为性能优良的高压端储氢合金.
参考文献
[1] | Wang Q D.J Mater Sci Eng,1991; 9(3):3(王启东.材料科学与工程,1991;9(3):3) |
[2] | Liu B H,Kim D M,Lee K Y,Lee J Y.J Alloys Compd,1996; 240:214 |
[3] | Park J G,Jang H Y,Han S C,Lee P S,Lee J Y.J Alloys Compd,2001; 325:293 |
[4] | Gamo T,Moriwake Y,Yanagihara N,Yamashita T,Iwaki T.Int J Hydrogen Energy,1985; 10:39 |
[5] | Feng D.Metal Physics.Vol.1,Beijing:Science Press,1987:135(冯端.金属物理学.上册,北京:科学出版社,1987:135) |
[6] | Dwight A E.Trans ASM,1961; 53:479 |
[7] | Hu G X,Qian M G.Theory of Metallurgy.Shanghai:Shanghai Science & Technology Press,1990:56(胡赓祥,钱苗根.金属学原理.上海:上海科技出版社,1990:56) |
[8] | Elliott R P,Rostoker W.Trans ASM,1958; 6:617 |
[9] | Osumi Y,Suzuki H,Kato A,Oguro K,Sugioka T,Fujita T.J Less-Common Met,1983; 89:257 |
[10] | Reilly J J.In:Andresen A F,Maeland A J,eds.,Proc Int Symp on Hydrides for Energy Storage.Oxford:Pergamon Press,1977:1251 |
[11] | Bernauer O,Springer J,Ziegler K.Ger Pat,DE 3,023,770C2,1980 |
[12] | Fruchart D,Soubeyroux J L,Hempelmann R.J LessCommon Met,1984; 99:307 |
[13] | Pourarian F,Wallace W E.J Less-Common Met,1983;91:223 |
[14] | Lundin C E,Lynch F E,Magee C B.J Less-Common Met,1977; 56:19 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%