对铸造镍基高温合金M963在900℃下的低周疲劳行为进行了研究,实验采取轴向总应变控制,应变速率分别为4×10-3 s-1和1×10-4 s-1.结果表明:在相同的总应变幅下,合金在低应变速率下具有较低的寿命,这归因于与时间相关的机制如氧化的损伤作用.疲劳断面以及纵向剖面的SEM分析表明,疲劳裂纹通常萌生于试样表面或亚表面的碳化物或铸造缺陷处.而当应变速率较低时,某些裂纹会在试样表面的枝晶间区域萌生.两种应变速率下疲劳裂纹开裂均呈穿晶形式.
参考文献
[1] | Ott M,Mughrabi H.Mater Sci Eng,1999;A272:24 |
[2] | Zhou H,Ro Y,Harada H,Aoki Y,Arai M.Mater Sci Eng,2004;A381:20 |
[3] | Zrnik J,Semenak J,Vrchovinsky V,Wang Y P.Mater Sci Eng,2001;A319-321:637 |
[4] | Ostergren W J.J Test Eval,1976;4:327 |
[5] | Neu R W,Sehitoglu H.Metatl Trans,1989;20A:1769 |
[6] | Rao K B S,Schiffers H,Schuster H,Nickle H.Metall Trans,1988;19A:359 |
[7] | Fournier D,Pineau A.Metall Trans,1977;8A:1095 |
[8] | Reger M,Remy L.Mater Sci Eng,1988;A101:47 |
[9] | He L Z,Zheng Q,Sun X F,Guan H R,Hu Z Q,Tieu A K,Lu C,Zhu H T.Mater Sci Eng,2005;A402:33 |
[10] | Yin F S,Sun X F,Li J G,Guan H R,Hu Z Q.Scr Mater,2003;48:425 |
[11] | He L Z,Zheng Q,Sun X F,Hou G C,Guan H R,Hu Z Q.Mater Sci Eng,2004;A380:340 |
[12] | Bathias C,Gabra M,Aliaga D.ASTM STP 770,1982 |
[13] | Manson S S.J Expt Mech,1965;5:193 |
[14] | Marchionni M,Osinkolu G A,Maldini M.Fatigue Frac Eng Mater Struct,1996;19:955 |
[15] | Chen L J,Wang Z G,Yao G,Tian J F.Acta Metall Sin,1999;35:1144(陈立佳,王中光,姚戈,田继丰.金属学报,1999;35:1144) |
[16] | Yao J,Guo J T,Yuan C,Li Z J.Acta Metall Sin,2005;41:357(姚俊,郭建亭,袁超,李志军.金属学报,2005;41:357) |
[17] | Plumbridge W J,Ellison E G.Mater Sci Technol,1987;3:706 |
[18] | Huang Z W,Wang Z G,Zhu S J,Yuan F H,Wang F G.Mater Sci Eng,2006;A432:308 |
[19] | Valsan M,Sastry D H,Rao K B S,Mannan S L.Metall Mater Trans,1994;25A:159 |
[20] | Reger M,Remy L.Mater Sci Eng,1988;A101:55 |
[21] | Reuchet J,Remy L.Mater Sci Eng,1983;58:33 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%