采用基于密度函数理论的缀加平面波加局域轨道方法和超晶胞方法对Mo含量(原子分数)为4.17%-37.5%的Ti-Mo二元合金的能量、电子结构以及弹性性质进行了理论计算,研究了Mo含量对Ti-Mo合金的β结构稳定性和弹性性质的影响.结果表明,随着Mo含量的升高,Ti-Mo合金的β结构稳定性提高,正方剪切常数(tetragonal shear constant)C'以及弹性模量B,E和G均呈单调增加;当Mo含量为4.77%时,正方剪切常数C'略大于零,此时Ti-Mo合金的β结构稳定性和弹性模量均最低.
参考文献
[1] | Ozaki T,Matsumoto H,Watanabe S,Hanada S.Mater Trans,2004; 45:2776 |
[2] | Zhou T,Aindow M,Alpay S P,Blackburn M J,Wu M H.Scr Mater,2004; 50:343 |
[3] | Hao Y L,Li S J,Sun S Y,Zheng C Y,Hu Q M,Yang R.Appl PAys Lett,2005; 87:091906 |
[4] | Miyazaki S,Kim H Y,Hosoda H.Mater Sei Eng,2006;A436-440:18 |
[5] | Kim H Y,Ikehara Y,Kim J I,Hosoda H,Miyazaki S.Acta Mater,2006; 54:2419 |
[6] | Kuroda D,Niinomi M,Morinaga M,Kato Y,Yashiro T.Mater Sci Eng,1998; A243:244 |
[7] | Ikehata H,Nagasako N,Furuta T,Fukumoto A,Miwa K,Saito T.PAys Rev,2004; 70B:174113 |
[8] | Schwarz K,Blaha P,Madsen G K H.Comput PAys Com-mun,2002; 147(1-2):71 |
[9] | Blochl P E,Jepsen O,Anderson O K.Phys Rev,1994;49B:16223 |
[10] | MeAl M J,Klein B M,Papaconstantopoulos D A.In:Westbrook J H,Fleischer R L,eds.,IntermatUic Com-pounds,Vol.1,Principles,London:John Wiley & Sons Ltd,1994:195 |
[11] | Anderson 0 L.J PAys Chem Solids,1963; 24:909 |
[12] | Born M,Huang K.Dynamical Theory of Crystal Lattices.Oxford:Clarendon Press,1954:141 |
[13] | Li T S,Morris J W,Nagasako N,Kuramoto S,Chrzan D C.Phys Rev Lett,2007; 98:105503 |
[14] | Ho W F,Ju C P,Chen L J H.Biomaterials,1999; 20:2115 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%