建立了基于元胞自动机(CA)和热力学相平衡计算引擎(PanEngine)的二维耦合模型,并应用于铝基四元合金枝晶组织和微观偏析的数值模拟.在该耦合模型中,采用CA方法模拟枝晶组织的演变.以固/液界面的平衡液相线温度和实际温度的差值作为枝晶生长的驱动力,同时考虑了固/液界面曲率的Gibbs-Thomson效应.通过求解溶质传输方程获得固/液界面处三种溶质的液相成分,耦合PanEngine获得固/液界面处的平衡液相线温度及三种溶质的平衡固相成分,为提高计算效率,采用预制数据表格的优化策略将CA与PanEngine进行耦合.将Al-4.5Cu-0.5Mg-1Si(质量分数,%)四元合金凝固时的固相分数随温度的变化以及固相分数和固相成分分布关系的模拟结果与Scheil模型和平衡凝固模型的预测结果进行了对比,结果表明,该模型不仅可应用于模拟多元合金中的枝晶生长形貌,而且能对铝基四元合金系凝固的微观偏析进行定量预测.
参考文献
[1] | Hecht U,Granasy L,Pusztai T,Bottger B,Apel M,Witusiewicz V,Katke L,De Wilde J,Froyen L,Camel D,Drevet B,Faivre G,Fries S G,Legendre B,Rex S.Mater Sci Eng,2004;R46:1 |
[2] | Xie F Y,Kraft T,Zuo Y,Moon C H,Chang Y A.Acta Mater,1999;47:489 |
[3] | Yan X,Chen S,Xie F,Chang Y A.Acta Mater,2002;50:2199 |
[4] | Xie F Y,Yan X Y,Ding L,Zhang F,Chen S L,Chu M G,Chang Y A.Mater Sci Eng,2003;A355:144 |
[5] | Ohsasa K,Nakaue S,KudohM,Narita T.ISIJ Int,1995;35:629 |
[6] | Ode M,Lee J S,Kim S G,Kim W T.Suzuki T.ISIJ Int,2000;40:870 |
[7] | Kobayashi H,Ode M,Kim S G,Kim W T,Suzuki T.Scr Mater,2003;48:689 |
[8] | Grafe U,Bottger B,Tiaden J,Fries S G.Scr Mater,2000;42:1179 |
[9] | Cha P R,Yeon D H,Yoon J K.Acta Mater,2001;49:3295 |
[10] | Zhang R J,Jing T,Jie W Q,Liu B C.Acta Mater,2006;54:2235 |
[11] | Jacot A,Rappaz M.Acta Mater,2002;50:1909 |
[12] | Jarvis D J,Brown S G R,Spittle J A.Mater Sci Technol,2000;16:1420 |
[13] | Lee P D,Chirazi A,Atwood R C,Wang W.Mater Sci Eng,2004;A365:57 |
[14] | Miettinen J.Metall Mater Trans,2000;31B:365 |
[15] | Bottger B,Grafe U,Ma D,Fries S G.Mater Sci Technol,2000;16:1425 |
[16] | Yang B J,Stefanescu D M,Leon-Torres J.Metall Mater Trans,2001;32A:3065 |
[17] | Nastac L.Acta Mater,1999;47:4253 |
[18] | Zhu M F,Hong C P.ISIJ Int,2001;41:436 |
[19] | Wang W,Lee P D,McLean M.Acta Mater,2003;51:2971 |
[20] | Yu J,Xu Q Y,Cui K,Liu B C.Acta Metall Sin,2007;43:731(于靖,许庆彦,崔锴,柳百成.金属学报,2007;43:731) |
[21] | Belteran-Sanchez L,Stefanescu D M.Metall Mater Trans,2004;35A:2471 |
[22] | Zhu MF,Chen SL,Xie FY,Hong C P,Chang YA.Trans Nonferrous Metals Soc China,2006;16(Suppl.2):s180 |
[23] | Zhu M F,Cao W,Chen S L,Hong C P,Chang Y A.J Phase Equilib Diffus,2007;28:130 |
[24] | Chen S L,Daniel S,Zhang F,Chang YA,Yan XY,Xie F Y,Schrnid-Fetzer R,Oates W A.Calphad,2002;26:175 |
[25] | Wheeler A A,Boettinger W J,McFadden G B.Phys Rev,1992;45A:7424 |
[26] | Gránásy L,Pusztai T,Warren J A,Douglas J F,B(o)rzs(o)nyi T.Ferreiro V.Nature Mater,2003;2:92 |
[27] | Brandes E A,Brook G B.Smithells Metals Reference Book.7 Ed.,Berlin:Butterworth-Heinemann Publishing,1997:1794 |
[28] | Ramirez J C,Beckermann C.Acta Mater,2005;53:1721 |
[29] | Shin Y H,Hong C P.ISIJ Int,2002;42:359 |
[30] | Boettinger W J,Warren J A,Beckermann C,Karma A.Annu Rev Mater Res,2002;32:163 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%