欢迎登录材料期刊网

材料期刊网

高级检索

用分子动力学模拟研究了金刚石压头在Ni晶体薄膜上的摩擦过程和薄膜塑性变形行为的纳观机制.结果表明:在摩擦过程中,穿晶层错和棱形位错环是纳米薄膜结构传递塑性变形的两种载体,纳米薄膜晶界捕获位错阻滞了塑性变形向薄膜晶界下方材料中传播.摩擦过程中易在较薄的薄膜表面和薄膜晶界之间产生穿晶层错,穿晶层错的产生增加了薄膜蓄积塑性变形的能力,从而抑制材料表面摩擦力在黏滑过程中的振荡幅度;在比较厚的薄膜中不易生成穿晶层错,在摩擦过程中位错环依次向体材料发射,并与晶界反应,湮灭于晶界,黏滑动摩擦响应与单晶相似.由于不同厚度薄膜塑性变形产生的位错结构不同,使得在摩擦过程中亚表面微结构的演化亦不同.

参考文献

[1] Gerberich W,Mook W.Nat Mater,2005; 4:577
[2] Guo Y,Zhuang Z,Li X Y,Chen Z.lnt J Solids Struct,2007; 44:1180
[3] Luan B Q,Robbins M O.Nature,2005; 435:929
[4] Van Swygenhoven H,Derlet P M,FrΦseth A G.Nat Mater,2004; 3:399
[5] Ma X L,Yang W.Nanotechnology,2003; 14:1208
[6] Lilleodden E T,Zimmerman J A,Foiles S M,Nix W D.J Mech Phys Solids,2003; 51:901
[7] Wang H L,Wang X X,Wang Y,Liang H Y.Acta Metall Sin,2007; 43:259(王海龙,王秀喜,王宇,梁海弋.金属学报,2007;43:259)
[8] Fang T H,Wu J H.Comput Mater Sci,2008; 43:785
[9] Denis S,Ronald E M.Acta Mater,2006; 54:33
[10] Kim K J,Yoon J H,Cho M H,Jang H.Mater Lett,2006;60:3367
[11] Jang H,Farkas D.Mater Lett,2007; 61:868
[12] Cheng D,Yan Z J,Yan L.Thin Solid Films,2007; 515:3698
[13] Mishin Y,Farkas D,Mehl M J,Papaconstantopoulos D A.Phys Rev,1999; 59B:393
[14] Fang T H,Weng C I.Nanotechnology,2000; 11:148
[15] Berendsen H J,Postma J P M,Gunsteren W V,Dinola A.J Chem Phys,1984; 81:3684
[16] Li J,Van Vliet K J,Zhu T,Yip S,Suresh S.Nature,2002;418:307
[17] Lee Y,Park J Y,Kim S Y,Jun S,Im S.Mech Mater,2005; 37:1035
[18] Honeycutt J D,Andersen H C.J Phys Chem,1987; 91:4950
[19] Humphrey W,Dalke A,Schulten K.J Mol Graphics,1996;14:33
[20] Mulliah D,Kenny S D,Smith R.Phys Rev,2004; 69B:205407
[21] Pei Q X,Lu C,Lee H P.Comput Mater Sci,2007; 41:177
[22] Li B,Clapp P C,Riikin J A,Zhang X M.J Appl Phys,2001; 90:3090
[23] Li M,Chu W Y,Gao K W,Su Y J,Qiao L J.Acta Metall Sin,2004; 40:449(李明,褚武扬,高克玮,宿彦京,乔利杰.金属学报,2004;40:449)
[24] Cho M H,Kim S J,Lira D S,Jang H.Wear,2005; 259:1392
[25] Guo J,Lu Q,Lu L.Acta Metall Sin,2006; 42:903(郭金宇,卢秋虹,卢磊.金属学报,2006;42:903)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%