欢迎登录材料期刊网

材料期刊网

高级检索

对商用25Cr2NiMo1V钢进行了955℃淬火+665℃回火的高压端热处理(HP)和900℃淬火+625℃回火的低压端热处理(LP).通过疲劳实验测定了HP与LP试样疲劳门槛值和疲劳裂纹扩展速率.结果表明,在门槛值区,HP试样门槛值高于LP试样,而其裂纹扩展速率却低于LP试样,HP试样抵抗疲劳裂纹扩展能力高于LP试样.材料抗疲劳裂纹扩展能力的不同是由裂纹的闭合引起的,表面粗糙度诱发裂纹闭合为主要因素.HP试样中回火贝氏体的紧密分布,原始奥氏体晶粒较大以及LP试样中回火马氏体抵抗裂纹扩展能力相对较弱使HP试样中粗糙度诱发裂纹的闭合程度大于LP试样.在Paris区,HP与LP试样的扩展速率相近,裂纹扩展速率对材料微观组织和应力比的影响不敏感.

参考文献

[1] Kadoya Y,Magoshi R,Kawai H,Morinaka K,Mikami M,Soeda K.J Iron Steel Inst Jpn,2001; 87:564
[2] Tsuchiyama T,Okamura M,Miyakawa M,Matsumura K.Res Dev,1993; 43(3):87
[3] Zhu M L,Xuan F Z,Mei L B,Wang S Y.Power Eng,2008; 28:664 (朱明亮,轩福贞,梅林波,王思玉.动力工程,2008;28:664)
[4] Tanaka Y,Azuma T,Miki K.In:Proc 4th Int Conf on Ad-vances in Materials Technology for Fossil Power Plants,Materials Park,OH:ASM International,2005:520
[5] Liaw P K,Saxena A,Swaminathan V P,Shih T T.In:Davidson D ed.,Int Sym on Fatigue Crack Growth Threshold Concepts,Warrendale:Metallurgical Society of AIME,1983:205
[6] Chaswal V,Sasikala G,Ray S K,Mannan S L,Raj B.Mater Sci Eng,2005; A395:251
[7] Forth S C,Newman Jr J C,Forman R G.Int J Fatigue,2003; 25(1):9
[8] Liaw P K,Les T R,Logsdon W A.Aeta Metall,1983; 31:1581
[9] Bulloch J H.Int J Pressure Vessels Piping,1994; 58:103
[10] Sadananda K.In:2nd Int Conf on Fatigue and Fatigue Thresholds,Birmingham:Engineering Materials Advisory Services Ltd.,1984:543
[11] Taylor D.Fatigue Thresholds.London:Butterworths,1989:72
[12] Ritchie R O.Int Met Rev,1979; 24:205
[13] McEvily A J,Minakawa K.In:7th Int Conf on Strength of Metals and Alloys,Quebec:Pergamon Press,1986:1358
[14] Chen D L,Weiss B,Stickler R.Int J Fatigue,1992; 14(5):325
[15] Elber W.In:ASTM ed.,Damage Tolerance in Aireraft Structures.Philadelphia:ASTM Special Technical Publi-cation,1971:230
[16] Lawson L,Chen E Y,Meshii M.lnt J Fatigue,1999; 21(S1):15
[17] Suresh S.Fatigue of Materials.Cambridge:Cambridge University Press,1998:483
[18] Lindley T,Richards C.Mater Sei Eng,1974; 14:281
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%