对细晶Ti-2A;-2.5Zr合金进行了室温/低温(77 K)疲劳实验及微观组织观察.结果表明:室温低应变幅Δεt/2(=0.5%,1.0%)下,合金表现为循环软化;室温高应变幅(1.5%,2.0%)下,则表现为循环应力饱和;77 K时,不同应变幅下均表现为循环硬化,且随应变幅升高,循环硬化程度增强.疲劳寿命测试结果表明:低温疲劳寿命始终高于室温.断口SEM观察表明,室温和低温下,疲劳裂纹扩展区均有明显的疲劳条纹,疲劳裂纹以穿晶方式扩展,室温下伴随有大量二次裂纹,低温下的二次裂纹数量明显减少.TEM观察表明:低温下孪生是合金主要的变形方式,包括{1011}和{1121}型孪晶.疲劳变形位错组态为:室温较低应变幅(0.5%,1.0%)下,形成位错线和局部位错缠结;室温下应变幅提高到1.5%和2.0%时,{1010}柱面和{1121}锥面滑移同时开动,位错组态演化为亚晶和明显的位错胞.77 K下,应变幅2.0%时形成沿柱面平行分布的位错带;77 K下应变幅升高到4.5%时,多滑移形成相互垂直的位错线.低温诱发形变孪晶是Ti-2Al-2.5Zr低温疲劳寿命升高的原因.
参考文献
[1] | Yu Z T,Zhou L,Deng J,Gu H C.Rare Met Mater Eng,1999; 28:340(于振涛,周廉,邓炬,顾海澄.稀有金属材料与工程,1999;28:340) |
[2] | Yu Z T.Nonferrous Smelting,2002; 31(6):182(于振涛.有色冶炼,2006;31(6):182) |
[3] | Yu Z T,Zhou L,Deng J,Gu H C.Rare Met Mater Eng,2000; 29:86(于振涛,周廉,邓炬,顾海澄.稀有金属材料与工程,2000;29:86) |
[4] | Venables J A.In:Reed-Hill R E,Hirth J P,Rogers H C,eds.Deformation Twinning.New York:Gordon andBreach,1964:7 |
[5] | Meyers M A,Vohringer O,Lubarda V A.Acta Mater,2001; 49:4025 |
[6] | Harding J.Proc R Soc London,1967; 299A:464 |
[7] | Bolling G F,Richman R H.Aeta MetaU,1965; 13:709 |
[8] | Chen M,Ma E,Hemker K J,Sheng H W,Wang Y M,Cheng X M.Science,2003; 300:1275 |
[9] | Huang C X,Wang K,Wu S D,Zhang Z F,Li G Y,Li S X.Acta Mater,2006; 54:655 |
[10] | Wu X L,Ma E.Appl Phys Left,2006; 88:195 |
[11] | Ueji R,Tsuchida N,Terada D,Tsuji N,Tanaka Y,Takemura A,Kunishige K.Scr Mater,2008; 59:963 |
[12] | Meyers M A,Andrade U R,Chokshi A H.Metall Mater Trans,1995; 26A:2881 |
[13] | Levine E D.Trans Met Soc AIME,1996; 236:1558 |
[14] | Song S G,GrayIII G T.Aeta Metall Mater,1995; 43:2325 |
[15] | Christan J W,Mahajan S.Prog Mater Sci,1995; 39:84 |
[16] | Tsuji N,Ito Y,Saito Y,Minamino Y.Scr Mater,2002;47:893 |
[17] | Hirth J P,Lothe J.Theory of Dislocations.2nd ed,Malabar,UK:Krieger Publishing,1992:650 |
[18] | Laird C,Stanzl S,de La Veaux R,Buchinger L.Mater Sci Eng,1986; 80:143 |
[19] | Xiao L,Kuang Z B.Acta Mater,1996; 44:3059 |
[20] | Bacon D J,Martin J W.Philos Mag,1981; 43:883 |
[21] | Lagerlf K P D,Castaing J,Pirouz P,Heuer A H.Philos Mag,2002; 82:2841 |
[22] | Xiao L,Umakoshi Y,Sun J.Metall Mater Trans,2001;32A:2841 |
[23] | Nilsson J O.Scr Metall,1983; 17:593 |
[24] | Li X W,Wu X M,Wang Z G,Umakoshi Y.Metall Mater Trans,2003; 34A:307 |
[25] | Starke E A,Lutjering G Jr.Fatigue and Microstructure,Metals Park,OH:ASM,1978:14 |
[26] | Jouiad M,Clement N,Coujou A.Philos Mag,1998; 77A:689 |
[27] | Heino S,Karlsson B.Acta Mater,2001; 49:353 |
[28] | Steffens Th,Schwink Ch,Korner A,Karnthaler H P.Philos Mag,1987; 56:161 |
[29] | Partridge P G.Metall Rev,1967; 118:175 |
[30] | Christian J W,Mahajan S.Prog Mater Sci,1995; 39:1 |
[31] | Yoo M H,Wei C T.Philos Mag,1966; 14:573 |
[32] | Tomsett D I,Bevis A.Philos Mag,1969; 19:533 |
[33] | Yoo M H.Metall Trans,1981; A12:409 |
[34] | Ehab E D,Surya R K,Roger D D.Metall Mater Trans,1999; 30A:1223 |
[35] | Ayman A S,Surya R K,Roger D D.Set Mater,2002; 46:419 |
[36] | Ayman A S,Surya R K,Roger D D.Acta Mater,2003;51:4225 |
[37] | Mullins S,Mpatchett B.MetaU Trans,1981; 12A:74 |
[38] | Akhtar A.Metall Trans,1975; 6A:1105 |
[39] | Beevers C J,Halliday M D.J Met Sci,1969; 3:74 |
[40] | Byrne J G.Deformation Twinning.Gainsville:AIME Conf,1963:397 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%