基于多晶体黏塑性自洽方法,建立了金属板材的Lankford系数(r值)、屈服应力和屈服面的计算模型. 以fcc多晶体为例,模拟分析了理想织构组分对宏观各向异性的影响.模拟结果表明,具有Cube和Goss织构的板材,其r值在45°附近最小,Cube织构的r值具有对称性,而Goss织构90°的r值远大于0°的r值;具有Cu,Bs和S织构的板材,其最大r值均出现在45°附近,0°和90°的r值均具有一定的不对称性.各理想织构的单轴拉伸屈服应力呈现出与r值相对应的变化规律,屈服面的形状也表现出相应的变化.上述模拟结果与Taylor-Bishop-Hill(TBH)模型以及唯象方法的计算结果定性符合.
参考文献
[1] | Lankford W T,Snyder S C,Bauscher J A.Trans ASM,1950;42:1197 |
[2] | Taylor G I.J Inst Met,1938;62:307 |
[3] | Bishop J F W,Hill R.Philos Mag,1951;42:414 |
[4] | Bishop J F W,Hill R.Philos Mag,1951;42:1298 |
[5] | Hill R.Proc R Soc London,1948;193A:281 |
[6] | Hosford W F.J Appl Mech Trans ASME,1972;39:607 |
[7] | Barlat F,Lian J.Int J Plast,1989;5:51 |
[8] | Molinari A,Canova G R,Ahzi S.Acta Metall,1987;35:2983 |
[9] | Lebensohn R A,Tome C N.Acta Metall Mater,1993;41:2611 |
[10] | Kocks U F,Tome C N,Wenk H R.Texture and Anisotropy.Cambridge:Cambridge University Press,1998:468 |
[11] | Choi S H,Barlat F.Scr Mater,1999;41:981 |
[12] | Choi S H,Bremi J C,Barlat F,Oh K H.Acta Mater,2000;48:1853 |
[13] | Vicente Alvarez M A,Perez T.Metall Mater Trans,2007;38A:17 |
[14] | Walde T.Int J Refract Met Hard Mater,2008;26:396 |
[15] | Bunge H J.Kristall Technik,1970;5:145 |
[16] | Van Houtte P.Text Microstruct,1987;7:29 |
[17] | Sarma G B,Radhakrishnan B,Zacharia T.Comput Mater Sci,1998;12:105 |
[18] | Savoie J,Jonas J J,Macewen S R,Perrin R.Text Mi-crostruet,1995;23:149 |
[19] | Ren B.PhD Thesis,University of Kentucky,Kentucky,1994 |
[20] | Choi S H,Cho J H,Barlat F,Chung K,Kwon J W,Oh K H.Metall Mater Trans.1999;30A:337 |
[21] | Lequeu Ph,Gilormini P,Montheillet F,Bacroix B,Jonas J J.Acta Metall.1987;35:1159 |
[22] | Barlat F,Richmond O.Mater Sci Eng,1987;95:15 |
[23] | Barlat F,Maeda Y,Chung K.J Mech Phys Solids,1997;45:1727 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%