简要介绍了现代高温装置的发展现状,认为高温装置的安全保障是后工业文明时代无法回避的问题.为了实现重大高温装备的设计制造和安全运行,高温下材料的寿命预测与结构失效评价是其中关键.针对基于Arrhenius方程的寿命外推方法存在的问题,提出要致力研究高温材料蠕变老化过程的物理化学动力学机理;针对实际结构引入的复杂应力状态,提出应构建拘束下的高温断裂理论;针对复杂载荷和环境的影响,应建立多损伤机制下的材料一结构一体化的统一失效评价方法.
The paper briefs the current trends of the construction of high temperature plants.The need of higher efficiency and lower consumption of resources has led to higher operation parameters of the plants.It is thus believed that the safety of high temperature iustallations is a critical issue that could hardly be circumvented in the period of post--industrial civilization.In order to achieve a reliable design and manufacture and safe operation of the high temperature plants,some fundamental issues concerning life prediction and failure assessment should be studied.Being aware of some very slow chemical reactions occurred in the high temperature materials after a certain period of service time.it is suggested that the phyrsico-chemical kinetics of the high temperature materials during the slow creep process should be established SO that the inaccuracy of life extrapolation techniques based on the conventional Arrhenius equation could be avoided.As the actual material in a component is generally subjected to a complex stress state and the machining of a standard fracture specimen from the component iS normally not possible,high temperature fracture theory under constraints should be developed to allow the estimation of fracture properties of the material.Furthermore,a unified failure assessment diagram that includes the local fracture property,the limit loading capacity and the damage law is proposed in order to assess the structural safety under complex loading and environment Cases.
参考文献
[1] | Tu S T.High Temperature Structural Integrity.Beijing:Science Press,2003:1(涂善东.高温结构完整性原理.北京:科学出版社,2003:1) |
[2] | Magistri L,Traverso A,Cerutti F,Bozzolo M,Costam-agna P,Massardo A F.Fuel Cells,2005;5:80 |
[3] | Yan M G,Wu X R,Zhu Z S.Aeronaut Manuf Technol,2003;(12):19(颜鸣皋,吴学仁,朱知寿.航空制造技术,2003;(12):19) |
[4] | Ryskamp J M.Next Generation Nuclear Plant-High-Level Functions and Requirements,INEEL/EXT-03-01163,Idaho Falls:Idaho National Engl'neering and Envi-ronmental Laboratory,2003,doi 10.2172/910744 |
[5] | Tu S T.Front Mech Eng China,2007;2:375 |
[6] | Viswanathan R,Stringer J.J Eng Mater Technol,2000,122:246 |
[7] | Liang X L,Headriek W L,Dharani L R,Zhao S M.Eng Failure Anal 2007;14:1233 |
[8] | ASME Code Section Ⅲ,Rules for Construction of Nu-clear Power Plant Components,Division 1,Sub-section NH.New York:ASME.1995 |
[9] | Yagi K.Int J Pressure Vesseles Piping,2008;85:22 |
[10] | Briner B G,Doering M.Science,1997;278:257 |
[11] | Heinrich A J,Lutz C P,Cupta J A,Eigler D M.Science,2002;298:1381 |
[12] | Bhadeshia H K D H,Strang A,Gooch D J.Int Mater Rev,1998;43:45 |
[13] | Shlyk-Kerner O,Samlsh I,Kaftan D,Holland N,Maruthi Sai P S,Kless H,Scherz A.Nature,2006;442:827 |
[14] | Sih G C,Tu S T.In:Sih G C,Tu S T,Wang Z D eds.,Structural Integrity and Materials Aging.Shanghai:East China University of Science and Technology Press,2003: |
[15] | Ta S T,Wang W Z.In:10000 Puzzles in Science(Chem-tstry Volume).Beijing:Science Press,2009:253(涂善东,王卫泽.10000个科学难题-化学卷.北京:科学出版社,2009:253) |
[16] | Wells A A,McBride F H.Can Metall Q,1967;6:347 |
[17] | Siverns M J,Price A T.Nature,1970;228:760 |
[18] | Wang Y L,Shen F z,Ta S T.Eng Fract Mech 1994;47:39 |
[19] | Landee J D,Begley J A.ASTM STP590.Philadelphia:ASTM,1976:128 |
[20] | Nikbin K M,Webster G A,Tamer C E.ASTM STP601.Philadelphia:ASTM.1976:47 |
[21] | Saxena A.ASTM STP803.Philadelphia:ASTM,1980.131 |
[22] | Ohji K,Kubo S.In:Ohtani R,Ohnami M,Inoue T eds.,High Temperature Creep-Fatigue,London:Elsevier,1988:91 |
[23] | Saxena A.In:Nair S V,Tien J K,Bates R C,Buck O eds..Fracture Mechanics:Microstructure and Micromech-anisms,Metals Park:ASM Int.,1989:283 |
[24] | Tu S T,Wang Z D,Chen J J.In:Sih G C,Nobile L eds.,Restoration,Recycling and Rejuvenation Technology for Engineering and Architecture Application,Rome:Aracne,2004:23 |
[25] | Lee J S,Jang J,Lee B W,Choi Y,Lee S G,Kwon D.Acta Mater,2006;54:1101 |
[26] | Chao Y J,Zhang X H.ASTM STP1296,Philadelphia:ASTM.1997.41 |
[27] | Williams M L.ASME J Appl Mech,1957;24:111 |
[28] | O'Dowd N P,Shih C F.J Mech Phys Solids,1991;38:989 |
[29] | Neimitz A,Galkiewicz J.Int J Pressure Vessels Piping,2006;83:42 |
[30] | Beremin F M.Metall Trans,1983;14A:2277 |
[31] | Gao X,Dodds R H.Eng Fract Mech,2001;68:263 |
[32] | Budden P J,Ainsworth R A.Int J Fracture,1999;97:237 |
[33] | Dean D W,Gladwin D N.Int J Pressure Vessels Piping,2007;84:378 |
[34] | Nguyen B N,Onck P,Giessen E.Eng Fract Mech,2000;65:467 |
[35] | Tu S T.In:Eleventh Five-Year Strategic Plan of National Natural Science Foundation of China.Beijing:SciencePress.2006:74(涂善东.国家自然科学基金委员会十一五战略研究规划.北京:科学出版社,2006:74) |
[36] | Shih C,Asaro R J.ASME J Atrpl Mech,1988;55:299 |
[37] | Shih C,Asaro R J.ASME J Appl Mech,1989;56:763 |
[38] | Shih C,Asaro R J,O'Dowd N P ASME J Appl Mech,1991;58:450 |
[39] | Qiao Y.Ser Mater,2003;49:491 |
[40] | Tu S T.Theor Appl Fract Mech 2002;38:203 |
[41] | Xuan F Z,Tu S T,Wang Z D.Int J Fract,2004;126:267 |
[42] | Chen J J,Tu S T,Xuan F Z,Wang Z D.In:Sih G C,Vu-Khsnh T eds.,Materials for SaSety and Health,Meso-scopic and Multiscale Consideration in Modern Science and Engineering,Montreal:University of Quebec,2005:99 |
[43] | Chen H R,Wang L M,Karihaloo B L,Williams F W.Comput Mater Sci,1998;12:1 |
[44] | Kim Y J,Kim J S,Schwalbe K H,Kim Y J.Fatigue,Fract Eng Mater Struct,2003;6:683 |
[45] | Xuan F Z,Tu S T,Wang Z D.Eng Fract Mech,2005;72:2602 |
[46] | Xuan F Z,Ta S T,Wang Z D.Adv Mech,2005;35:391(轩福贞,涂善东,王正东.力学进展,2005;35:391) |
[47] | R5.Assessment Procedure for the High Temperature Re-sponse of Structures.Procedure R5,Issue 2,Gloucester:Nuclear Electric Ltd..1997 |
[48] | Drubay B,Moulin D,Faidy C,Bhandari S.Defect As-sessment Procedure:A French Approach.ASME PVP 266,New York:ASME,1993:113 |
[49] | PD6539.1994 Guide to Methods for the Aesessment of the Influence of Crack Growth on the Significance of Defects in Components Operating at High Temperatures.London:BSI,1994 |
[50] | British Standards Bs 7910.1999,Guide to Methods of As-sessing the Acceptabdity of Flaws in Fusion Welded Struc-tures.London:BSI,1999 |
[51] | Concari S,Fairman A.Int J Pressure Vessels Piping,2001;78:1031 |
[52] | http://www.eurofitnet.org/ |
[53] | Wakai T,Potmsard C,Drubay B.Nucl Eng Des,2003;224:245 |
[54] | Tu S T,Segle P,Gong J M.Int J Pressure Vessels Piping,2004;81:199 |
[55] | Xuan F Z,Ta S T,Wang Z D.Fatigue Fract Mater Struet,2006:29:157 |
[56] | GB/T 19624--2004.Safety Assessment for In-Service Pressure Vessels Containing Defects,General Administra-rio of Quality Supervmion,Inspection and Quarantine of the Peoples's Republic of China.2005(中华人民共和国国家标准GB/T19624--2004,国家质量监督检验检疫总局,2005) |
[57] | Dowling A R,Townly C H A.Int J Pressure Vessels & Piping.1975;3:77 |
[58] | R6 Assessment of the Integrity of Structures Containing Defects.Procedure R6-Revision 4,Gloucester,UK:Nu-clear Electric Ltd.2000 |
[59] | Wichman,K,Lee S.Int J Pressure Vessels Piping,1990;43:57 |
[60] | Dong J L,Fu J Y,Ylu S Y,Yin D J.Chin High Technol Lett,2000;(10):81(董建令,傅激扬,于溯源,殷德健.高技术通讯,2000;(10):81) |
[61] | Ainsworth R A,Hooton D G,Green G.Eng Pract Mech,1999;62:95 |
[62] | Davies C M,O'Dowd N P,Dean D W,Nikbin K M,Ainsworth R A.Int J of Pressure Vessels Piping,2003:80:541 |
[63] | Budden P J.Eng Fract Mech,2006;73:537 |
[64] | Xuan F Z,Tu S T,Wang Z D.Chin J Mech Eng,2004;17:537 |
[65] | Tu S T,Xuan F Z.Key Eng Mater,2005;297-300:428 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%