采用第一原理赝势平面波方法计算了D019结构的α2-Ti-25Al-xNb(x=0-12,原子分数,%)晶体的弹性模量(B,G和E)和抗拉强度(σb),并利用Cauchy压力(C12-C44)与G/B比值表征和评判了不同浓度Nb合金化时α2-Ti-25Al-xNb合金的韧脆化倾向.结果表明:在x=2-12时,α2-Ti-25Al-xNb晶体的抗拉强度(σb)与α2相合金的弹性模量(B,E和G)随x增加而增大;在x=0-6时,α2-Ti-25Al-xNb合金脆性有一定改善,且x值越大韧化效果越好;但在x=7-9时,相对于α2-Ti3Al,合金脆性不但没有得到弱化,反而随z增加而加剧;随后,当x进一步增大时,合金脆性又随x增加再次得到改善,至x=12时,α2-Ti-25Al-xNb合金的韧化效果最好.通过电子态密度(DOS)和投影电子态密度(PDOS)等电子结构的分析,初步解释了Nb的这种强化与韧化作用.
参考文献
[1] | Ward C H,Williams J C,Thompson A W.Scr Metall Mater,1993; 28:1017 |
[2] | Leyens C,Peters M.Titanium and Titanium Alloys.Weinheim:Wiley-VCH,2003:54 |
[3] | Zou J,Fu C L,Yoo M H.Intermetallies,1995; 3:265 |
[4] | Ravi C,MathiJaya S,Valsakumar M C,Asokamani R.Phys Rev,2002; 65B:155118 |
[5] | Banerjee D,Gogia A K,Nandy T K,Joshi V A.Acta Metall,1988; 36:871 |
[6] | Kestner-Weykamp H T,Ward C H,Broderick T F,Kaufman M J.Scr Metall,1989; 23:1697 |
[7] | Hu Q M,Yang R,Xu D S,Hao Y L,Li D,Wu W T.Phys Rev,2003; 68B:054102 |
[8] | Kamat S V,Gogia A K,Banerjee D.Acta Mater,1997; 46:239 |
[9] | Kim Y W,Froes F H.In:Whang S H,Liu C T,Pope D P,Stiegler J O,eds.,High-Temperature Aluminides and Intermetallics.Warrendale:TMS,1990:465 |
[10] | Paradkar A,Kamat S V,Gogia A K,Kashyap B P.Mater Sci Eng,2008; A491:390 |
[11] | Cao J X,Bai F,Li Z X.Mater Sci Eng,2006; A424:47 |
[12] | Gogia A K,Nandy T K,Banerjee D,Carisey T,Strudel J L,Franchet J M.lntermetallics,1998; 6:741 |
[13] | Xu D S,Song Y,Li D,Hu Z Q.Mater Sci Eng,1997;A234:230 |
[14] | Hao Y L,Xu D S,Cui Y Y,Yang R,Li D.Acta Mater,1999; 47:1129 |
[15] | Song Y.PhD Thesis,Institute of Metal Research,Chinese Academy of Sciences,Shenyang,1997(宋岩.中国科学院金属研究所博士学位论文,沈阳,1997) |
[16] | Music D,Schneider J M.Phys Rev,2006; 74B:174110 |
[17] | Liu Y L,Liu L M,Wang S Q,Ye H Q.Intermetallics,2007; 15:428 |
[18] | Segall M D,Lindan P J D,Probert M J,Pickard C J,Hasnip P J,Clark S J,Paynel M C.J Phys Condens Mater,2002; 14:2717 |
[19] | Vanderbilt D.Phys Rev,1990; 41B:7892 |
[20] | Perdew J P,Burke K,Ernzerhof M.Phys Rev Left,1996;77:3865 |
[21] | Fischer T H,Almlof J.J Phys Chem,1992; 96:9768 |
[22] | Tanaka K,Okamoto K,Inui H,Minonishi Y,Yamaguchi M,Koiwa M.Philos Mag,1996; 73A:1475 |
[23] | Fu C L,Zou J,Yoo M H.Scr Metall Mater,1995; 33:885 |
[24] | Ramer N J,Rappe A M.Phys Rev,2000; 62B:743 |
[25] | Souvatzia P,Katsnelson M I,Simak S,Ahuja R,Eriksson O,Mohn P.Phys Rev,2004; 70B:012201 |
[26] | Hu Q K,Wu Q H,Ma Y M,Zhang L J,Liu Z Y,He J L,Sun H,Wang H T.Phys Rev,2006; 73B:214116 |
[27] | Past W,Gregorova E.Ceram Silik,2004; 48:14 |
[28] | Bercegeay C,Bernard S.Phys Rev,2005; 72B:214101 |
[29] | Pugh S F.Philos Mag,1954; 45:823 |
[30] | Pettifor D G.Mater Sci Technol,1992; 8:345 |
[31] | Lu G H,Deng S H,Wang T M,Kohyama M,Yamamoto P.Phys Rev,2004; 69B:134106 |
[32] | Luo W D,Roundy D,Cohen M L.Phys Rev,2002; 66B:94110 |
[33] | Nielsen O H.Phys Rev,1985; 32B:3780 |
[34] | Jahnatek M,Krajci M,Harrier J.Phys Rev,2005; 71B:024101 |
[35] | Kishida K,Yoshikawa J,Inui H,Yamaguchi M.Acta Mater,1999; 47:3405 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%