欢迎登录材料期刊网

材料期刊网

高级检索

研究了一种新型高强抗热腐蚀DZ68合金,运用低偏析技术设计了DZ68合金的成分,利用OM,SEM和XRD等研究了DZ68合金铸态、热处理态的微观组织.研究了DZ68合金拉伸.持久性能和抗热腐蚀性能,并与DZ125和IN738合金进行了比较.结果表明:铸态DZ68合金组织由,γ,γ',(γ+γ')共晶、MC型碳化物和少量硼化物组成,热处理后的组织由γ,γ',MC和M_(23)C_6型碳化物组成;DZ68合金的拉伸性能和持久性能与DZ125合金相当,抗热腐蚀性能与IN738合金相当,并具有良好的组织稳定性.

In order to meet the requirements of marine gas turbine blade materials, a new-type directional solidification Ni-based superalloy named DZ68 was developed. The alloy composition was designed by low segregation technology. Its nominal chemical composition (mass fraction, %) is C 0.05, Cr 12.0, Mo 1.0, W 5.0, Co 8.5, Al 5.3, Ti 0.5, Ta 5.0, Re 2.0, B 0.01, and balance is Ni. The microstructures of as-cast DZ68 alloy and after heat treatment states were analyzed by OM, SEM and XRD. The tensile, rupture and hot corrosion resistance properties of DZ68 alloy were compared with DZ125 and IN738 alloys. Results show that the microstructure of as-cast DZ68 alloy is composed of γ,γ', (γ+γ') eutectics, MC type carbides and a few borides. After heat treatment, the microstructure of DZ68 alloy is composed of γ,γ' and carbides. The carbides are mainly MC and M_(23)C_6. The tensile strength of DZ68 alloy decreases slightly with the increase of temperature, and reaches its minimum value at 700 ℃. When the temperature is higher than 700 ℃, the tensile strength increases so evidently that reaches its maximum at once at 760 ℃, But when the temperature is higher than 760 ℃ its tensile strength decreases obviously. It is well recognized the relationship of the tensile strength of DZ68 alloy with temperature is abnormal, similar to that of its yield strength but opposite to that of its plasticity. The tensile and rupture properties of DZ68 alloy are nearly the same as those of DZ125 alloy and its hot corrosion resistance property is nearly the same as that of IN738 alloy under the same conditions.

参考文献

[1] Liu X W,Huang J F.J Chongqing Inst Technol,2000;14(1):48(刘筱薇,黄进峰.重庆工学院学报,2000;14(1):48)
[2] Gurrappa I.Oxid Met,1999;51:353
[3] Huang Q Y,Li H K,Guo J T.Superalloy.Beijing:Met-allurgical Industry Press,2000:115(黄乾尧,李汉康,郭建亭.高温合金.北京:冶金工业出版社,2000:1151
[4] Stringer J.Mater Sci Technol,1987;3:482
[5] Li M S.High Temperature Corrosion of Metal.Beijing:Metallurgical Industry Press,2001:34(李美栓.金属的高温腐蚀.北京:冶金工业出版社,2001:34)
[6] Sidhu R K,Ojo O A,Chaturvedi M C.J Mater Sci,2008;43:3612
[7] Zhou Y Z,Volek A,Green N R.Acta Mater,2008;56:2631
[8] Gordon A P,Trexler M D,Neu R W.Acta Mater,2007;55:3375
[9] Wright I G,Gibbous T B.Int J Hydrogen Energy,2007;32:3610
[10] Zhu Y X,Zhang S N,Zhang T X,Zhang J H,Hu Z Q,Xie X S,Shi C X.In:Antolovich S D,Stusrud R W,Mackay R A,Anton D L,Khan T,Kissinger R D,Klarstrom D L eds.,Superalloys 1992,PA:TMS,1992:145
[11] Shi C X,Yah M G,Zhu Z Q.China Aeronautical Mate-rials Handbook.Beijing:Standards Press of China,2001:550(师昌绪,颜鸣皋,朱之琴.中国航空材料手册.北京:中国标准出版社,2001:550)
[12] Shi C X,Lu D,Rong K.Forty Years D,China Superalloy.Beijing:Chinese Science and Technology Press,1996:8(师昌绪,陆达,荣科.中国高温合金四十年.北京:中国科学技术出版社,1996:8)
[13] Sun M C.Mechanics Property of Metal.Harbin:Harbin Institute of Technology Press,2005:240(孙茂才.金属力学性能.哈尔滨:哈尔滨工业大学出版社,2005:240)
[14] Ma C D,Huang Z H,Wang Q R.Aeronautical Engine Ma-terials Handbooks for Designation.Beijing:Metallurgical Industry Press,1989:61(马翠娣,黄志豪,王庆如.航空发动机设计用材料数据手册.北京:冶金工业出版社,1989:61)
[15] Ning L K,Zheng Z,Tan Y,Liu E Z,Tong J,Yu Y S,Wang H.Acta Metall Sin,2009;45:161(宁礼奎,郑志,谭毅,刘恩泽,佟健,于永泗,王华.金属学报,2009;45:161)
[16] Yu Z F,Zheng Z,Liu E Z,Yu Y S,Zhu Y X.J Chin Soc Corros Prot,2008;28:277(于忠锋,郑志,刘恩泽,于永泗,朱耀宵.中国腐蚀与防护学报,2008;28:277)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%