采用亚点阵的化合物能模型计算低温区间Fe-N二元相图.计算结果表明,25~350℃低温区,分别存在着Q-α-Fe(N)和γ′-Fe4N,γ′-Fe4N和ε-Fe2N1-x二相平衡.Q-α-Fe(N),γ′-Fe4N,ε-Fe2N1-x均为热力学稳定相.依据Guillermet和Du的热力学性质参数计算的低温区间Fe-N二元相图与现有实验数据相符.
参考文献
[1] | Komuro M, Kozono Y, Hanazono M. IEEE Trans. J. Magnet Jpn, 1990, 5: 493-501. |
[2] | Wriedt H A, Gokcen N A, Nafziger R H. Bull. Alloy Phase Diag, 1986, 8: 355-377. |
[3] | Hillert M, Jarl M. Metall. Trans., A, 1975, 6: 553-559. |
[4] | Kunze J. Steel Res., 1986, 57: 361-367. |
[5] | Frisk K. Calphad, 1987, 11: 127-134. |
[6] | Frisk K. Calphad, 1991, 15: 79-106. |
[7] | Guillermet A F, Du H. Z. Metallkd., 1994, 85: 154-163. |
[8] | Du H. J. Phase Equilib., 1993, 14: 682-693. |
[9] | Dijkstra L J. Trans. AIME, 1949, 185: 252-260. |
[10] | Collette G, Roederer C, Crussard C. Mem. Sci. Rev., 1961, 58: 61-72. |
[11] | Vredenberg A M, Perez-Martin C M, Custer J S, et al. J. Mater. Res, 1992, 7: 2689-2712. |
[12] | Kopcewicz M, Jagielski J, Turos A, J. Appl. Phys., 1992, 71: 4217-4226. |
[13] | THERMO-CALC databank, version L, Royal Institute of Technology, Stockholm, 1997. |
[14] | Martin G. Phys. Rev. B, 1984, 30: 1424-1436. |
[15] | Moreira E C, Amaral L, Behar M, et al. J. Appl. Phys., 1996, 80: 3127-3129. |
[16] | Moreira E C, Amaral L, Sanchez G, et al. Nucl. Instr. Methods B, 1997, 127/128: 756-759. |
[17] | Jagielski J, Kopcewicz M, Matz W, et al. Nucl. Instr. Methods B, 2001, 175/177: 448-452. |
[18] | Lei M K, Zhang Z L. Surf. Coat. Technol., 1997, 91: 25-31. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%