无机材料学报, 2004, 19(3): 666-670. doi: 10.3321/j.issn:1000-324X.2004.03.037
抑制BaF2晶体闪烁光慢成分的选择吸收膜系的研究
马晓辉 1, , 顾牡 2, , 徐荣昆 超临界抗溶剂(SAS)过程的主要特征,归纳了一些SAS过程制备超微细粒的影响因素和SAS过程机理模型的研究,阐述了SAS过程在制备聚乳酸基药物微细颗粒方面的应用.","authors":[{"authorName":"任杰","id":"2e2cd0be-736f-417b-8139-297ebac07bc0","originalAuthorName":"任杰"},{"authorName":"张鹏","id":"a5b2a9f3-fa92-4438-9c5e-d19e4d761710","originalAuthorName":"张鹏"},{"authorName":"滕新荣","id":"43b9e83c-134d-4bcc-8e19-c8098b14bb47","originalAuthorName":"滕新荣"},{"authorName":"任天斌","id":"1c125bad-3fa4-43da-af50-77763da0a343","originalAuthorName":"任天斌"}],"doi":"","fpage":"39","id":"79c3f0da-bbf8-48dd-838e-13b1a0b60ef9","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"840e5fbd-a33e-483f-a540-67bbfcad84b4","keyword":"超临界抗溶剂","originalKeyword":"超临界抗溶剂"},{"id":"b79d2fca-a93f-483f-a8cb-df2aa7ac788d","keyword":"微细颗粒","originalKeyword":"微细颗粒"},{"id":"8f18078d-9318-42a4-bcb7-66a9ab410bdb","keyword":"超临界流体","originalKeyword":"超临界流体"},{"id":"7125d8aa-8da6-4f85-8010-35f8c39531f7","keyword":"聚乳酸","originalKeyword":"聚乳酸"}],"language":"zh","publisherId":"cldb200512011","title":"超临界抗溶剂技术在聚乳酸基药物微粒制备中的应用","volume":"19","year":"2005"},{"abstractinfo":"超临界二氧化碳抗溶剂(SAS)技术可用来制备用于药物控释体系的载药聚合物超细粒子.本实验采用SAS过程制备并表征了作为药物缓释制剂的可生物降解聚乳酸微粒,得到了球形或椭圆形的PLLA粒子,并研究了聚合物分子量等对微粒形成的影响.此外还对PLLA载药微粒的载药量进行了测定.这项工作为载药微粒的进一步制备和研究奠定了基础.","authors":[{"authorName":"滕新荣","id":"ddc5dd38-7a5e-46c6-bdb4-d9fe996848cc","originalAuthorName":"滕新荣"},{"authorName":"任杰","id":"805cb239-a3ed-4304-bdbe-3ff45889d446","originalAuthorName":"任杰"},{"authorName":"张鹏","id":"35af2b18-aca7-41bd-8495-140de81cf80e","originalAuthorName":"张鹏"}],"doi":"","fpage":"195","id":"d53863a5-abd7-413a-a16b-0dc29c5d6c30","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a9a3a3f0-49b9-428b-aa8d-b84fbea8d2d4","keyword":"超临界抗溶剂","originalKeyword":"超临界抗溶剂"},{"id":"b36993f8-ee8e-4bad-a69f-996f1384d371","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"41eaf5ff-7955-43ae-bf0d-a24d8ec29488","keyword":"药物","originalKeyword":"药物"}],"language":"zh","publisherId":"gfzclkxygc200601049","title":"超临界抗溶剂技术制备聚乳酸微粒及表征","volume":"22","year":"2006"},{"abstractinfo":"超临界流体抗溶剂技术可以用于制备微细材料,在高分子、医药、电子和化学工业中都具有广阔的应用前景.综述了超临界抗溶剂技术在制备超细微粒方面的应用研究进展.尤其详细介绍了利用超临界抗溶剂技术在制备生物降解聚合物及药物制剂方面的研究现状.","authors":[{"authorName":"滕新荣","id":"dbb08d34-174a-4aa5-85fc-c0e87faf78d4","originalAuthorName":"滕新荣"},{"authorName":"任杰","id":"9340bb0e-8d3f-4231-804e-4588dbc12172","originalAuthorName":"任杰"},{"authorName":"顾书英","id":"9b1e60f4-101c-4527-b6d5-7083acc86bc7","originalAuthorName":"顾书英"}],"doi":"","fpage":"207","id":"55cc089f-7ab1-4b45-9e09-60a87a91fe06","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"cf3fe6e3-3b92-40bd-8e92-fce0a9fdf153","keyword":"超临界抗溶剂技术","originalKeyword":"超临界抗溶剂技术"},{"id":"967f8eb0-0b89-476b-a73b-63afbd5b8a01","keyword":"超细微粒","originalKeyword":"超细微粒"},{"id":"ef1df569-4676-4ead-9c34-e496ddb4bcfa","keyword":"生物降解聚合物","originalKeyword":"生物降解聚合物"},{"id":"3222b607-035b-4105-b90a-9450d5d84181","keyword":"药物","originalKeyword":"药物"}],"language":"zh","publisherId":"cldb2005z2066","title":"超临界抗溶剂技术在制备超细微粒中的应用研究进展","volume":"19","year":"2005"},{"abstractinfo":"以L-聚乳酸为模型体系,超临界CO2为抗溶剂,采用超临界流体抗溶剂法制备聚乳酸微球.考察了压力、温度、溶液浓度、溶液流速、二氯甲烷-丙酮混合溶剂、聚合物分子量等参数对制备微球的形态、粒径及其分布的影响.结果表明,改变工艺参数,可在一定范围内调控微球粒径,所制微球平均粒径0.67~6.64μm,溶液浓度及其流速为主要影响因素;实验条件一定时,采用二氯甲烷-丙酮混合溶剂及强制分散溶液法制备得较小粒径微球.释放度实验结果表明,微球按一级释放方程释药,具缓释效果.","authors":[{"authorName":"蒲曦鸣","id":"34d6b359-a0c5-4126-ab32-deb821269404","originalAuthorName":"蒲曦鸣"},{"authorName":"康云清","id":"c01edcff-1794-4d2f-ae2e-c164d424004b","originalAuthorName":"康云清"},{"authorName":"陈爱政","id":"6d6b529b-eff6-479a-8554-30d28c67cc6e","originalAuthorName":"陈爱政"},{"authorName":"尹光福","id":"ad5c8ff4-e13d-473b-aa97-2d88f0f47832","originalAuthorName":"尹光福"},{"authorName":"廖立","id":"d9321160-153f-4f6e-85ff-5b065b006d58","originalAuthorName":"廖立"},{"authorName":"陈琳","id":"ff77f43a-c972-4466-ab21-dd4ec6eb3bf5","originalAuthorName":"陈琳"}],"doi":"","fpage":"549","id":"8a412659-a830-403b-a849-ec88b2d24c7a","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"fa95b9f1-d659-46c6-a6c1-05ff06c1bf16","keyword":"超临界二氧化碳","originalKeyword":"超临界二氧化碳"},{"id":"eb037d66-1905-4a2f-b669-126a886f7bd9","keyword":"抗溶剂法","originalKeyword":"抗溶剂法"},{"id":"167530a5-1814-428e-84a4-0e639b7833ff","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"b505b051-68e7-4305-9758-2a5e1410a98b","keyword":"微球","originalKeyword":"微球"}],"language":"zh","publisherId":"gncl200704011","title":"超临界CO2抗溶剂法制备聚乳酸药物缓释微球","volume":"38","year":"2007"},{"abstractinfo":"以CO2为抗溶剂介质,无水乙醇为溶剂,采用超临界抗溶剂法制备了Al2O3前驱体硝酸铝纳米颗粒,考察了温度和溶液浓度等因素对制备过程的影响,并通过焙烧前驱体硝酸铝制得了纳米Al2O3球形颗粒. 采用热重-质谱、 X射线衍射、透射电镜和场发射透射电镜对所制备的硝酸铝和Al2O3纳米颗粒进行了表征,并用H2程序升温还原技术初步考察了纳米Al2O3负载Ni催化剂的还原性能,发现纳米Al2O3比一般Al2O3载体对活性组分Ni具有更好的分散性能.","authors":[{"authorName":"何春燕","id":"8a02b798-2101-4d14-b52f-cccad3fba6fb","originalAuthorName":"何春燕"},{"authorName":"姜浩锡","id":"080ed638-3b80-4832-9a2e-3dfd26f705d9","originalAuthorName":"姜浩锡"},{"authorName":"张敏华","id":"5c5aa70d-3290-4abf-b362-c85bf099e8c3","originalAuthorName":"张敏华"}],"doi":"","fpage":"890","id":"83aa0e03-032f-4bde-a184-2844a36a7bd6","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"014460f4-a627-4bee-a60d-56fbc457d0f6","keyword":"超临界抗溶剂法","originalKeyword":"超临界抗溶剂法"},{"id":"730b6f66-82bd-43c5-b7f2-15f1b2d966a1","keyword":"二氧化碳","originalKeyword":"二氧化碳"},{"id":"6c679846-ca1c-4476-a643-235b3fc786f6","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"d32a1486-ad2e-4a33-8863-ca6c8fdb53d5","keyword":"硝酸铝","originalKeyword":"硝酸铝"},{"id":"95647ee5-c7da-4349-b3ae-19a35b08ba90","keyword":"氧化铝","originalKeyword":"氧化铝"}],"language":"zh","publisherId":"cuihuaxb200710011","title":"超临界抗溶剂法制备纳米氧化铝颗粒","volume":"28","year":"2007"},{"abstractinfo":"以CO2为抗溶剂介质, 无水乙醇为溶剂, 采用超临界抗溶剂法(SAS)制备了纳米Al2O3-ZrO2复合氧化物颗粒的前驱体—纳米Al(NO3)3-Zr(NO3)4颗粒, 系统考察了温度和压力等因素对制备过程的影响, 并对前驱体中Al、Zr组分的共抗溶剂效应进行了研究, 通过焙烧前驱体Al(NO3)3-Zr(NO3)4制得了纳米Al2O3-ZrO2球形颗粒. 采用热重质谱(TG-MS)、X射线衍射(XRD)、X射线光电子能谱(XPS)、场发射透射电镜(FEG-TEM)和程序升温还原(TPR)等技术对所制备的前驱体Al(NO3)3-Zr(NO3)4和Al2O3-ZrO2纳米颗粒的物化性能进行了表征, 初步考察了Al2O3-ZrO2纳米颗粒负载Ni催化剂的还原性能. 研究发现, 该纳米复合氧化物比用浸渍?沉淀法制得的Al2O3-ZrO2载体对活性组分Ni具有更好的分散性能, 作为新型催化剂载体材料有良好的应用前景.","authors":[{"authorName":"姜浩锡","id":"86667211-6723-492b-876b-b15e912e117c","originalAuthorName":"姜浩锡"},{"authorName":"何春燕","id":"8efb935d-711e-4e79-910d-242831e01157","originalAuthorName":"何春燕"},{"authorName":"孙焕花","id":"9e39ae58-f19c-4cf1-b9cd-c7dc873168d9","originalAuthorName":"孙焕花"},{"authorName":"李桂明","id":"75e19100-8e9a-4e91-a933-561e2525ecaf","originalAuthorName":"李桂明"},{"authorName":"张敏华","id":"8672d677-edeb-4e44-b892-29e1fb146dd4","originalAuthorName":"张敏华"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2010.01065","fpage":"1065","id":"c9531b3a-ef93-45fc-8fcd-7641dc7cb0b1","issue":"10","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"102949d8-d55b-4cd0-937e-2818b90a1494","keyword":"超临界抗溶剂法","originalKeyword":"超临界抗溶剂法"},{"id":"c634ed69-f791-4b62-84ea-f0d3bbe8ebaf","keyword":" carbon dioxide","originalKeyword":" carbon dioxide"},{"id":"6f1f832d-5788-4c70-b113-37e246b40344","keyword":" nanoparticles","originalKeyword":" nanoparticles"},{"id":"026d77bc-2f64-434c-92b5-de7bf3b6dc3a","keyword":" alumina-zirconia composed oxide","originalKeyword":" alumina-zirconia composed oxide"}],"language":"zh","publisherId":"1000-324X_2010_10_3","title":"超临界抗溶剂法纳米Al2O3-ZrO2颗粒的制备与表征","volume":"25","year":"2010"},{"abstractinfo":"以CO2为抗溶剂介质,无水乙醇为溶剂,采用超临界抗溶剂法(SAS)制备了纳米Al2O3-ZrO2复合氧化物颗粒的前驱体-纳米Al(NO3)3-Zr(NO3)4颗粒,系统考察了温度和压力等因素对制备过程的影响,并对前驱体中Al、Zr组分的共抗溶剂效应进行了研究,通过焙烧前驱体Al(NO3)3-Zr(NO3)4制得了纳米Al2O3-ZrO2球形颗粒.采用热重质谱(TG-MS)、X射线衍射(XRD)、X射线光电子能谱(XPS)、场发射透射电镜(FEG-TEM)和程序升温还原(TPR)等技术对所制备的前驱体Al(NO3)3-Zr(NO3)4和Al2O3-ZrO2纳米颗粒的物化性能进行了表征,初步考察了Al2O3-ZrO2纳米颗粒负载Ni催化剂的还原性能.研究发现,该纳米复合氧化物比用浸渍-沉淀法制得的Al2O3-ZrO2载体对活性组分Ni具有更好的分散性能,作为新型催化剂载体材料有良好的应用前景.","authors":[{"authorName":"姜浩锡","id":"4c864b23-f71f-4fe3-ab64-15da8aeb1b18","originalAuthorName":"姜浩锡"},{"authorName":"何春燕","id":"61d708e7-7d4d-48ea-a4f1-3faf99697a4e","originalAuthorName":"何春燕"},{"authorName":"孙焕花","id":"a8586b26-7afe-4f63-b381-62225c66e439","originalAuthorName":"孙焕花"},{"authorName":"李桂明","id":"56024d5f-7d4f-46cd-9e12-2e2476271daf","originalAuthorName":"李桂明"},{"authorName":"张敏华","id":"941219d1-6754-4a27-be8a-1803ed4ba8aa","originalAuthorName":"张敏华"}],"doi":"10.3724/SP.J.1077.2010.01065","fpage":"1065","id":"587cae7b-cad6-4628-bc8c-df6cc0296304","issue":"10","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"480ac43b-facc-4938-8d78-c195985d5d56","keyword":"超临界抗溶剂法","originalKeyword":"超临界抗溶剂法"},{"id":"b47ba279-b375-4994-a09d-e162f1bab835","keyword":"二氧化碳","originalKeyword":"二氧化碳"},{"id":"068d4eaf-da45-45b8-aca2-c3535f320ed1","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"9675444c-ce04-43de-8436-735457112bee","keyword":"Al2O3-ZrO2复合氧化物","originalKeyword":"Al2O3-ZrO2复合氧化物"}],"language":"zh","publisherId":"wjclxb201010011","title":"超临界抗溶剂法纳米Al2O3-ZrO2颗粒的制备与表征","volume":"25","year":"2010"},{"abstractinfo":"SAS是一种涉及SCF的新兴技术,在聚合物和生物大分子、药物和生物活性物质、染料、催化剂、超导体和无机化合物等领域的应用已取得了进展,制备出了微米、甚至纳米级的颗粒.以无机化合物醋酸镁为模型化合物研究SAS制备纳米颗粒的过程.利用TEM测试研究了压力、溶剂种类、初始溶剂浓度对颗粒的粒度影响.XRD、FT-IR测试表明,沉析过程后得到的颗粒晶型不完整,主要仍以醋酸镁为主,部分形成了碳酸盐颗粒.实验中得到了平均粒径在100nm以下的醋酸镁颗粒.","authors":[{"authorName":"申延明","id":"832d762a-a3ce-46db-815f-1d42092b9236","originalAuthorName":"申延明"},{"authorName":"吴静","id":"428d895b-ab51-4281-bb9d-ce35645bf41f","originalAuthorName":"吴静"},{"authorName":"刘东斌","id":"5889c237-4846-48a5-a9da-e3dc92740e28","originalAuthorName":"刘东斌"},{"authorName":"张振祥","id":"aaf3b39f-448d-4fd1-b6cb-29ba3e54fc38","originalAuthorName":"张振祥"},{"authorName":"田景州","id":"bf29f879-7477-49ff-b121-af44d93a9e72","originalAuthorName":"田景州"}],"doi":"","fpage":"33","id":"bd7ff1dd-48ac-4e2a-b58d-d048ca367397","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5d87d0e6-19d2-4ded-bde0-6b8996c6260a","keyword":"SAS","originalKeyword":"SAS"},{"id":"80e03f50-67d9-4bd4-b440-e7c178ba5226","keyword":"醋酸镁","originalKeyword":"醋酸镁"},{"id":"13634cd1-1923-40c4-af51-d77d876f1226","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"}],"language":"zh","publisherId":"cldb2004z2011","title":"超临界CO2抗溶剂制备无机化合物--醋酸镁纳米颗粒过程的研究","volume":"18","year":"2004"},{"abstractinfo":"超细微粒,特别是纳米级粒子的研制,在当前的高新技术中己成为一热门领域,在材料、化工、轻工、冶金、电子、生物医学等领域得到广泛应用.超临界流体技术制备超微粉体是一项新技术.本文介绍了近年来开发的一些新方法和新工艺,诸如超临界溶液快速膨胀法,超临界流体抗溶剂法,超临界流体化学反应和超临界干燥法.重点介绍了超临界溶液快速膨胀法、超临界流体抗溶剂法的研究进展及其影响因素.并指出,要将这些技术应用于工业化生产,尚需在理论上有一定的突破.","authors":[{"authorName":"刘松明","id":"de045c0d-de56-4ca3-b1c2-80d565e4ded8","originalAuthorName":"刘松明"},{"authorName":"李爱菊","id":"701180aa-bf84-42ac-b199-1386ab944cb6","originalAuthorName":"李爱菊"},{"authorName":"王威强","id":"ae3b1fd2-38d4-4a2d-9a7e-979b9c0d4584","originalAuthorName":"王威强"},{"authorName":"刘燕","id":"601ac401-d5a0-4f87-b0aa-d51216a56a7a","originalAuthorName":"刘燕"},{"authorName":"邢晓伟","id":"ca73be82-6a38-48c3-8bee-2776b7124de5","originalAuthorName":"邢晓伟"}],"doi":"10.3969/j.issn.1673-2812.2007.03.038","fpage":"481","id":"eae71f22-e9ff-43fe-a5f4-4683bf58ceb9","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"597927d1-821e-49bc-84ee-c6c0154eeaf4","keyword":"超临界流体","originalKeyword":"超临界流体"},{"id":"ad0128a2-003b-4505-84a8-980e17e36355","keyword":"溶液快速膨胀法","originalKeyword":"溶液快速膨胀法"},{"id":"4ed75bd5-dd98-4218-a712-af4765de81b8","keyword":"抗溶剂法","originalKeyword":"抗溶剂法"},{"id":"0b5cb7e9-8da3-4da5-affd-e0ecfd6c55a6","keyword":"超临界流体化学反应","originalKeyword":"超临界流体化学反应"},{"id":"8c5847cb-3690-431e-909d-f188370b6a18","keyword":"超临界干燥法","originalKeyword":"超临界干燥法"}],"language":"zh","publisherId":"clkxygc200703038","title":"超临界法制备超微粉体技术","volume":"25","year":"2007"},{"abstractinfo":"在超临界流体介质中制备纳米颗粒是一项纳米颗粒合成的新技术.介绍了超临界流体的特性,综述了超临界流体快速膨胀、超临界流体抗溶剂、超临界流体干燥、超临界流体微乳液、超临界二氧化碳制动沉降法等技术的原理、影响因素、应用研究及发展前景.利用超临界流体较好的溶解、扩散和传质能力,可制备出性能优异的纳米颗粒.","authors":[{"authorName":"刘玲","id":"b13690be-3933-4c8d-8326-e98abf85f6f3","originalAuthorName":"刘玲"},{"authorName":"刘昭铁","id":"e8805176-9af5-42ba-b1a5-67c5670f081e","originalAuthorName":"刘昭铁"}],"doi":"","fpage":"24","id":"5edf89ab-1aeb-4f07-951a-289607c03840","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e0b73dc6-0950-4d71-9cc7-0e45df9c1736","keyword":"超临界流体","originalKeyword":"超临界流体"},{"id":"b7d4d7f6-de7e-45f9-8b81-d03ed79cd429","keyword":"超临界流体快速膨胀","originalKeyword":"超临界流体快速膨胀"},{"id":"78129bfd-c596-44f2-874d-2609a97fdecd","keyword":"超临界流体抗溶剂","originalKeyword":"超临界流体抗溶剂"},{"id":"b24f132a-4da9-48a1-bb3f-fd8be3941b2d","keyword":"超临界流体干燥","originalKeyword":"超临界流体干燥"},{"id":"67dffdc6-fce1-4f40-814e-e98fbd16f75d","keyword":"超临界流体微乳液","originalKeyword":"超临界流体微乳液"},{"id":"dc8569e6-b0fa-4690-b403-c955ad0bf616","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"b142dc0b-4c6c-4764-9d1d-42a858718ba6","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"cldb2005z2007","title":"超临界二氧化碳介质中纳米颗粒合成研究进展","volume":"19","year":"2005"}],"totalpage":945,"totalrecord":9442}