对于非均匀复合材料中多个裂纹的动态断裂力学问题,提出了一种分析方法,假设复合材料为正交各向异性并含有多个垂直于厚度方向的裂纹,材料参数沿厚度方向为变化的,沿该方向将复合材料划分为许多单层,假设单层材料参数为常数,应用柔度矩阵/刚度矩阵方法及Fourier变换法,在Laplace域内推导出了控制问题的奇异积分方程组,并用虚位移原理求解,给出了应力强度因子及能量释放率的表达式,然后利用Laplace数值反演,得出了裂纹尖端的动态应力强度因子和能量释放率.作为算例,研究了带有两个裂纹的功能梯度结构,分析了材料参数的优化对降低应力强度因子的意义.
参考文献
[1] | Erdogan F. The crack problem for a bonded nonhomogeneous material under antiplane shear loading. J Appl Mech, 1985, 52:823~825 |
[2] | Delale F, Erdogan F. On the mechanical modeling of the interfacial region in bonded half-planes. J Appl Mech, 1988, 55:317~324 |
[3] | Delale F, Erdogan F. Interface crack in a nonhomogeneous elastic medium. Int J Engng Sci, 1988, 26: 559~568 |
[4] | Oztur M, Erdogan F. The anisymmetric crack problem in a nonhomogeneous medium. J Appl Mech, 1993, 60:406~413 |
[5] | Ozturk M, Erdogan F. An axisymmetric crack in bonded materials with a nonhomogeneous interfacial zone under torsion. J Appl Mech, 1995,62:116~125 |
[6] | Ozturk M, Erdogan F. Axisymmetric crack problem in bonded materials with a graded interfacial region. Int J Solids Structures, 1996,33:193~219 |
[7] | Hata T. Thermal stress in a nonhomogeneous semi-infinite elastic solid under steady distribution of temperature. Transaction of the Japan Society of Mechanical Engineers(A), 1985, 51:1789~1795 |
[8] | Sih G C, Chen E P. Cracks in Composite Materials. In: Sih G C,ed. Mechanics of Fracture. The Hague: Martinus Nijhoff, 1981 |
[9] | Chen E P, Sih G C. Interfacial delamination of a layered composite under antiplane strain, J Comp Mat, 1971, 5:12~23 |
[10] | Ryvkin M. Mode Ⅲ crack in a laminated medium. Int J Solids Structures, 1996,33:3361~3625 |
[11] | Ashbaugh N E. Stress in laminated composites containing a broken layer. J Appl Mech, 1973,40:533~540 |
[12] | Hilton P D, Sih G C. A laminate composite with a crack normal to the interfaces. Int J Solids Structures, 1971, 7:913~930 |
[13] | Muskhelishvili N I. Singular Integral Equations. The Netherlands: Noordhoff, Groningen, 1953 |
[14] | Gradshteyn I S, Ryzhik I M. Tables of integrals, Series and Products. New York: Academic Press, 1965 |
[15] | Koichi KAIZU, Yousuke SUZUKI, Shinji TANIMURA. Numerical analysis of stress wave propagation in a circular tube made of functionally gradient materials. Transaction of the Japan Society of Mechanical Engineers(A), 1991,57:143~147 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%