欢迎登录材料期刊网

材料期刊网

高级检索

从细观力学的角度给出了分析残余应力对一般复合材料塑性性能影响的一种解析方法,该方法基于应力二阶矩的割线模量法及Ponte Castaneda和Willis给出的弹性细观模型.有残余应力时,所提的细观解析模型能够同时考虑纤维形状,体积百分比,纤维取向及纤维的分布对复合材料变形的影响.计算结果表明,残余应力的存在会引起复合材料拉压变形的不对称,材料宏观的拉压硬化曲线又与复合材料的细观结构参数密切相关.对单向复合材料,本文作者对其等效割线热膨胀系数,拉压应力-应变曲线的有限元分析结果与给出的细观解析模型定量吻合.

参考文献

[1] Shibata S, Taya M, Mori T, Mura T. Dislocation punching from spherical inclusions in a metal matrix composite[J]. Acta Metall Mater, 1992, 40:3141~3148.
[2] Arsenault R J, Taya M. Thermal residual stress in metal matrix composite[J]. Acta Metall Mater,1987, 35:651~659.
[3] Withers P J, Stobbs W M, Pederson O B. The application of the Eshelby method of internal stress determination for short fiber metal matrix composites[J].Acta Metall Mater, 1989, 37:2061~2084.
[4] Ramakrishnan N. An analytical study on strengthening of particulate reinforced metal matrix composites[J].Acta Metall Mater, 1996, 44:69~77.
[5] Hu G K, Weng G J. Influence of thermal residual stresses on the composite macroscopic behavior[J].Mechanics of Materials, 1998, 27:229~240.
[6] Hu G K, Weng G J. Some reflections on the Mori-Tanaka and Ponte Casdaneda-Willis methods with randomly oriented ellipsoidal inclusion[J].Acta Mechanica, 2000, 140: 31~40.
[7] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting dislocation[J].Acta Metall Mater, 1973, 21:571~574.
[8] Ponte Castaneda P, Willis J R. The effect of spatial distribution on the effective behavior of composite and cracked media[J].Journal of Mechanics and Physics of Solids, 1995, 43:1919~1951.
[9] Willis J R. Variational and related methods for the overall properties of composite[J].Adv Appl Mech, 1981, 21:1~78.
[10] Laws N. On the thermostatics of composite materials[J].Journal of Mechanics and Physics of Solids,1973,21:9~17.
[11] Weng G J. Explicit evaluation of Willis bounds with ellipsoidal inclusions[J].Int J Engng Sci, 1990, 30:83~92.
[12] Mura T. Micromechanics of defects in solids[M]. 2nd ed. Martinus Nijhoff, Dordrecht 1987.
[13] Hu G K. A method of plasticity for general aligned spheroidal void or fiber reinforced composites[J].Int Journal of Plasticity, 1996, 12:439~449.
[14] Hu G K. Composite plasticity based on second order stress moment[J].Int J Sol Struc, 1997, 34:1007~1015.
[15] Berveiller M, Zaoui A. An extension of the self-consistent scheme to plastically-flowing polycrystals[J]. Journal of Mechanics and Physics of Solids,1979, 26:325~344.
[16] Tandon G P, Weng G J.A theory of particle-reinforced plasticity[J]. ASME Journal of Applied Mechanics, 1988, 55:126~135.
[17] 胡更开,侯静春. 复合材料宏观性能细观预测[J].北京理工大学学报,1995, 15:265~270.
[18] Corbin S F, Wilkinson D S, Embury J D. The Bauschinger effect in a particulate reinforced Al alloy[J]. Mater Sci Engng, 1996, A207:1~11.
[19] Llorca J, Martin A, Ruiz J, Elices M.Particulate fracture during deformation of a spray formed metal matrix composite[J]. Metal Trans, 1993, A24:1575~1588.
[20] Dutta I, Sims J D, Seigenthaler D M. An analytical study of residual stress effects on uniaxial deformation of whisker reinforced metal-matrix composites[J].Acta metall Mater, 1993, 41:885~908.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%