欢迎登录材料期刊网

材料期刊网

高级检索

从细观和宏观两个角度研究复合材料及其结构的塑性极限承载问题.在细观角度上,从基于材料细观结构代表性胞元出发,根据塑性极限分析中的上限理论,借助于均匀化理论和有限元方法,建立复合材料强度参数计算的有限元数学规划格式.在此基础上,模拟复合材料的屈服面,进而拟合出复合材料的屈服准则.在宏观角度上,针对由复合材料构成的结构,根据数值模拟得到的屈服准则,利用上限分析方法计算得到复合材料结构的极限载荷.

参考文献

[1] Suquet P. Homogenization techniques for composite media. Lecture Notes in Physics 272 [M], New York: Springer, 1987.193-228.
[2] Francescato P, Pastor J. Lower and upper numerical bounds to the off-axis strength of unidirectional fiber-reinforced composite by limit analysis methods [J]. Eur J Mech A/Solids, 1997, 16 (2): 213-234.
[3] Michel J C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Comp Methods Appl Mech Engng, 1999, 172 (1): 109-143.
[4] Taliercio A. Lower and upper bounds to the macroscopic strength domain of a fiber-reinforced composite material [J]. Int J Plasticity, 1992, 8 (6): 741-762.
[5] Litewka A. Experimental study of the effective yield surface for perforated materials [J]. Nucl Eng Des, 1980, 57 (2): 417-425.
[6] Zhang Y G, Lu M W. Computational limit analysis of anisotropic axisymmetric shells [J]. Int J Pres Ves & Piping, 1994, 58 (3): 283-287.
[7] 沈观林. 复合材料力学 [M]. 北京:清华大学出版社,1996.63-72.
[8] 严宗达. 塑性力学 [M]. 天津:天津大学出版社,1988.246-259.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%